Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 17116, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051557

RESUMEN

Non-Fermi-liquid (NFL), a significant deviation from Fermi-liquid theory, usually emerges near an order-disorder phase transition at absolute zero. Recently, a diverging susceptibility toward zero temperature was observed in a quasicrystal (QC). Since an electronic long-range ordering is normally absent in QCs, this anomalous behaviour should be a new type of NFL. Here we study high-resolution partial-fluorescence-yield x-ray absorption spectroscopy on Yb-based intermediate-valence icosahedral QCs and cubic approximant crystals (ACs), some of which are new materials, to unveil the mechanism of the NFL. We find that for both forms of QCs and ACs, there is a critical lattice parameter where Yb-valence and magnetism concomitantly exhibit singularities, suggesting a critical-valence-fluctuation-induced NFL. The present result provides an intriguing structure-property relationship of matter; size of a Tsai-type cluster (that is a common local structure to both forms) tunes the NFL whereas translational symmetry (that is present in ACs but absent in QCs) determines the nature of the NFL against the external/chemical pressure.

2.
J Synchrotron Radiat ; 26(Pt 5): 1790-1796, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490171

RESUMEN

A multimodal imaging instrument has been developed that integrates scanning near-field optical microscopy with nanofocused synchrotron X-ray diffraction imaging. The instrument allows for the simultaneous nanoscale characterization of electronic/near-field optical properties of materials together with their crystallographic structure, facilitating the investigation of local structure-property relationships. The design, implementation and operating procedures of this instrument are reported. The scientific capabilities are demonstrated in a proof-of-principle study of the insulator-metal phase transition in samarium sulfide (SmS) single crystals induced by applying mechanical pressure via a scanning tip. The multimodal imaging of an in situ tip-written region shows that the near-field optical reflectivity can be correlated with the heterogeneously transformed structure of the near-surface region of the crystal.

3.
Nat Commun ; 8(1): 2262, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273808

RESUMEN

Broadband tunability is a central theme in contemporary nanophotonics and metamaterials research. Combining metamaterials with phase change media offers a promising approach to achieve such tunability, which requires a comprehensive investigation of the electromagnetic responses of novel materials at subwavelength scales. In this work, we demonstrate an innovative way to tailor band-selective electromagnetic responses at the surface of a heavy fermion compound, samarium sulfide (SmS). By utilizing the intrinsic, pressure sensitive, and multi-band electron responses of SmS, we create a proof-of-principle heavy fermion metamaterial, which is fabricated and characterized using scanning near-field microscopes with <50 nm spatial resolution. The optical responses at the infrared and visible frequency ranges can be selectively and separately tuned via modifying the occupation of the 4f and 5d band electrons. The unique pressure, doping, and temperature tunability demonstrated represents a paradigm shift for nanoscale metamaterial and metasurface design.

4.
Nat Mater ; 11(12): 1013-6, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23042414

RESUMEN

Quasicrystals are metallic alloys that possess long-range, aperiodic structures with diffraction symmetries forbidden to conventional crystals. Since the discovery of quasicrystals by Schechtman et al. in 1984, there has been considerable progress in resolving their geometric structure. For example, it is well known that the golden ratio of mathematics and art occurs over and over again in their crystal structure. However, the characteristic properties of the electronic states--whether they are extended as in periodic crystals or localized as in amorphous materials--are still unresolved. Here we report the first observation of quantum (T = 0) critical phenomena of the Au-Al-Yb quasicrystal--the magnetic susceptibility and the electronic specific heat coefficient arising from strongly correlated 4f electrons of the Yb atoms diverge as T→0. Furthermore, we observe that this quantum critical phenomenon is robust against hydrostatic pressure. By contrast, there is no such divergence in a crystalline approximant, a phase whose composition is close to that of the quasicrystal and whose unit cell has atomic decorations (that is, icosahedral clusters of atoms) that look like the quasicrystal. These results clearly indicate that the quantum criticality is associated with the unique electronic state of the quasicrystal, that is, a spatially confined critical state. Finally we discuss the possibility that there is a general law underlying the conventional crystals and the quasicrystals.

5.
Phys Rev Lett ; 90(16): 166402, 2003 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-12731985

RESUMEN

We have carried out thermal expansion measurements on the heavy fermion compound URu2Si2. We have discovered a new anomaly that appears only under pressure for both the tetragonal a and c axes. Plotting these temperatures on a temperature-pressure plane, we have constructed a phase diagram, in which there is a first order phase transition boundary separating a hidden and antiferromagnetic order. When the system enters the antiferromagnetic phase from the hidden order, the lattice constant shrinks along the a axis and elongates along the c axis, leading to an increase in the lattice constant ratio of c/a. We conclude that the system lies close to a bicritical point from which the first order phase transition line emanates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...