Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 72(5): 566-73, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17579662

RESUMEN

The kidney is the major regulator of potassium homeostasis. In addition to the ROMK channels, large conductance Ca(2+)-activated K(+) (BK) channels are expressed in the apical membrane of the aldosterone sensitive distal nephron where they could contribute to renal K(+) secretion. We studied flow-induced K(+) secretion in BK channel alpha-subunit knockout (BK(-/-)) mice by acute pharmacologic blockade of vasopressin V(2) receptors, which caused similar diuresis in wild-type and knockout mice. However, wild-type mice, unlike the BK(-/-), had a concomitant increase in urinary K(+) excretion and a significant correlation between urinary flow rate and K(+) excretion. Both genotypes excreted similar urinary amounts of K(+) irrespective of K(+) diet. This was associated, however, with higher plasma aldosterone and stronger expression of ROMK in the apical membrane of the aldosterone-sensitive portions of the distal nephron in the knockout than in the wild-type under control diet and even more so with the high-K(+) diet. High-K(+) intake significantly increased the renal expression of the BK channel in the wild-type mouse. Finally, despite the higher plasma K(+) and aldosterone levels, BK(-/-) mice restrict urinary K(+) excretion when placed on a low-K(+) diet to the same extent as the wild-type. These studies suggest a role of the BK channel alpha-subunit in flow-induced K(+) secretion and in K(+) homeostasis. Higher aldosterone and an upregulation of ROMK may compensate for the absence of functional BK channels.


Asunto(s)
Riñón/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Potasio/orina , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas , Regulación de la Expresión Génica , Genotipo , Homeostasis , Canales de Potasio de Gran Conductancia Activados por el Calcio/deficiencia , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Ratones , Ratones Noqueados , Potasio/administración & dosificación , Potasio/efectos adversos , Canales de Potasio de Rectificación Interna/genética , Sueño
2.
Acta Physiol (Oxf) ; 189(3): 251-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17305705

RESUMEN

AIM: Colonic crypts are the site of Cl- secretion. Basolateral K+ channels provide the driving force for luminal cystic fibrosis transmembrane regulator-mediated Cl- exit. Relevant colonic epithelial K+ channels are the intermediate conductance Ca2+-activated K(Ca)3.1 (SK4) channel and the cAMP-activated K(V)7.1 (KCNQ1) channel. In addition, big conductance Ca2+-activated K(Ca)1.1 (BK) channels may play a role in Ca2+-activated Cl- secretion. Here we use K(Ca)1.1 and K(Ca)3.1 knock-out mice, and the K(V)7.1 channel inhibitor 293B (10 microm) to investigate the role of K(Ca)1.1, K(Ca)3.1 and K(V)7.1 channels in cholinergic-stimulated Cl- secretion. METHODS: A Ussing chamber was used to quantify agonist-stimulated increases in short circuit current (Isc) in distal colon. Chloride secretion was activated by bl. forskolin (FSK, 2 microm) followed by bl. carbachol (CCH, 100 microm). Luminal Ba2+ (5 mm) was used to inhibit K(Ca)1.1 channels. RESULTS: K(Ca)1.1 WT and KO mice displayed identical FSK and CCH-stimulated Isc changes, indicating that K(Ca)1.1 channels are not involved in FSK- and cholinergic-stimulated Cl- secretion. CCH-stimulated DeltaIsc was significantly reduced in K(Ca)3.1 KO mice, underscoring the known relevance of this channel in the activation of Cl- secretion by an intracellular Ca2+ increasing agonist. The residual CCH effect observed in K(Ca)3.1 KO mice suggests that yet another K+ channel is driving the CCH-stimulated Cl- secretion. In the presence of the specific K(V)7.1 channel blocker 293B, the residual CCH effect was abolished. CONCLUSIONS: This demonstrates that both K(Ca)3.1 and K(V)7.1 channels are activated by cholinergic agonists and drive Cl- secretion. In contrast, K(Ca)1.1 channels are not involved in stimulated electrogenic Cl- secretion.


Asunto(s)
Cloruros/fisiología , Colon , Mucosa Intestinal/metabolismo , Canales de Potasio/fisiología , Animales , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Cromanos/farmacología , Colforsina/farmacología , Femenino , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Bloqueadores de los Canales de Potasio/farmacología , Distribución Aleatoria , Sulfonamidas/farmacología
3.
Neuroscience ; 143(3): 837-49, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17074442

RESUMEN

The molecular basis of high versus low frequency hearing loss and the differences in the sensitivity of outer hair cells depending on their cochlear localization are currently not understood. Here we demonstrate the existence of two different outer hair cell phenotypes along the cochlear axis. Outer hair cells in low frequency regions exhibit early sensitivity for loss of Ca(v)1.3 (alpha1 subunit 1.3 forming the class D L-type voltage-gated Ca(2+) channel), while high frequency regions display a progressive susceptibility for loss of the Ca(2+)-activated large conductance K(+) (BK) channel. Despite deafness, young Ca(v)1.3-deficient mice displayed distortion-product otoacoustic emissions (DPOAEs), indicating functional outer hair cells in the higher frequency range of the cochlea. Considering that DPOAEs are also found in the human deafness syndrome DFNB9 caused by mutations in the synaptic vesicle protein otoferlin, we tested the expression of otoferlin in outer hair cells. Surprisingly, otoferlin showed a distinct tonotopic expression pattern at both the mRNA and protein level. Otoferlin-expressing, Ca(v)1.3 deletion-sensitive outer hair cells in the low frequency range could be clearly separated from otoferlin-negative, BK deletion-sensitive outer hair cells in the high frequency range. In addition, BK deletion led to a higher noise vulnerability in low frequency regions, which are normally unaffected by the BK deletion alone, suggesting that BK currents are involved in survival mechanisms of outer hair cells under noise conditions. Our findings propose new mechanisms and candidate genes for explaining high and low frequency hearing loss.


Asunto(s)
Cóclea/citología , Células Ciliadas Auditivas Externas/citología , Células Ciliadas Auditivas Externas/fisiología , Estimulación Acústica/métodos , Oxidorreductasas de Alcohol , Animales , Animales Recién Nacidos , Umbral Auditivo/fisiología , Canales de Calcio Tipo L/deficiencia , Proteínas Co-Represoras , Cóclea/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Regulación de la Expresión Génica/genética , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Pérdida Auditiva Sensorineural/fisiopatología , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/deficiencia , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Emisiones Otoacústicas Espontáneas/genética , Fosfoproteínas/metabolismo , ARN Mensajero , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo
4.
Proc Natl Acad Sci U S A ; 101(25): 9474-8, 2004 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-15194823

RESUMEN

Malfunctions of potassium channels are increasingly implicated as causes of neurological disorders. However, the functional roles of the large-conductance voltage- and Ca(2+)-activated K(+) channel (BK channel), a unique calcium, and voltage-activated potassium channel type have remained elusive. Here we report that mice lacking BK channels (BK(-/-)) show cerebellar dysfunction in the form of abnormal conditioned eye-blink reflex, abnormal locomotion and pronounced deficiency in motor coordination, which are likely consequences of cerebellar learning deficiency. At the cellular level, the BK(-/-) mice showed a dramatic reduction in spontaneous activity of the BK(-/-) cerebellar Purkinje neurons, which generate the sole output of the cerebellar cortex and, in addition, enhanced short-term depression at the only output synapses of the cerebellar cortex, in the deep cerebellar nuclei. The impairing cellular effects caused by the lack of postsynaptic BK channels were found to be due to depolarization-induced inactivation of the action potential mechanism. These results identify previously unknown roles of potassium channels in mammalian cerebellar function and motor control. In addition, they provide a previously undescribed animal model of cerebellar ataxia.


Asunto(s)
Ataxia Cerebelosa/fisiopatología , Canales de Potasio Calcio-Activados/fisiología , Células de Purkinje/fisiología , Animales , Parpadeo/fisiología , Femenino , Hibridación in Situ , Canales de Potasio de Gran Conductancia Activados por el Calcio , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Canales de Potasio Calcio-Activados/deficiencia , Canales de Potasio Calcio-Activados/genética , Sinapsis/fisiología
5.
Circ Res ; 87(9): 825-30, 2000 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-11055988

RESUMEN

Both cGMP-dependent and -independent mechanisms have been implicated in the regulation of vascular tone by NO. We analyzed acetylcholine (ACh)- and NO-induced relaxation in pressurized small arteries and aortic rings from wild-type (wt) and cGMP kinase I-deficient (cGKI(-/-)) mice. Low concentrations of NO and ACh decreased the spontaneous myogenic tone in wt but not in cGKI(-/-) arteries. However, contractions of cGKI(-/-) arteries and aortic rings were reduced by high concentrations (10 micromol/L) of 2-(N:, N-diethylamino)-diazenolate-2-oxide (DEA-NO). Iberiotoxin, a specific blocker of Ca(2+)-activated K(+) (BK(Ca)) channels, only partially prevented the relaxation induced by DEA-NO or ACh in pressurized vessels and aortic rings. DEA-NO increased the activity of BK(Ca) channels only in vascular smooth muscle cells isolated from wt cGKI(+/+) mice. These results suggest that low physiological concentrations of NO decrease vascular tone through activation of cGKI, whereas high concentrations of DEA-NO relax vascular smooth muscle independent of cGKI and BK(Ca). NO-stimulated, cGKI-independent relaxation was antagonized by the inhibition of soluble guanylyl cyclase or cAMP kinase (cAK). DEA-NO increased cGMP to levels that are sufficient to activate cAK. cAMP-dependent relaxation was unperturbed in cGKI(-/-) vessels. In conclusion, low concentrations of NO relax vessels by activation of cGKI, whereas in the absence of cGKI, NO can relax small and large vessels by cGMP-dependent activation of cAK.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/deficiencia , GMP Cíclico/farmacología , Músculo Liso Vascular/efectos de los fármacos , Óxido Nítrico/farmacología , Vasodilatación/efectos de los fármacos , Acetilcolina , Animales , Aorta , AMP Cíclico/análisis , GMP Cíclico/análisis , Hidrazinas , Técnicas In Vitro , Masculino , Ratones , Músculo Liso Vascular/enzimología , Óxidos de Nitrógeno , Péptidos/farmacología
6.
J Exp Med ; 189(8): 1255-64, 1999 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-10209042

RESUMEN

Atherosclerotic vascular lesions are considered to be a major cause of ischemic diseases, including myocardial infarction and stroke. Platelet adhesion and aggregation during ischemia-reperfusion are thought to be the initial steps leading to remodeling and reocclusion of the postischemic vasculature. Nitric oxide (NO) inhibits platelet aggregation and smooth muscle proliferation. A major downstream target of NO is cyclic guanosine 3', 5'-monophosphate kinase I (cGKI). To test the intravascular significance of the NO/cGKI signaling pathway in vivo, we have studied platelet-endothelial cell and platelet-platelet interactions during ischemia/reperfusion using cGKI-deficient (cGKI-/-) mice. Platelet cGKI but not endothelial or smooth muscle cGKI is essential to prevent intravascular adhesion and aggregation of platelets after ischemia. The defect in platelet cGKI is not compensated by the cAMP/cAMP kinase pathway supporting the essential role of cGKI in prevention of ischemia-induced platelet adhesion and aggregation.


Asunto(s)
Plaquetas/enzimología , Proteínas Quinasas Dependientes de GMP Cíclico/deficiencia , Agregación Plaquetaria/genética , Animales , Plaquetas/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Tamaño de la Célula/genética , GMP Cíclico/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Endotelio Vascular/enzimología , Técnicas In Vitro , Isquemia/fisiopatología , Ratones , Ratones Noqueados , Microcirculación/fisiopatología , Proteínas de Microfilamentos , Óxido Nítrico/farmacología , Fosfoproteínas/metabolismo , Fosforilación , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Serotonina/metabolismo
8.
EMBO J ; 17(11): 3045-51, 1998 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-9606187

RESUMEN

Regulation of smooth muscle contractility is essential for many important biological processes such as tissue perfusion, cardiovascular haemostasis and gastrointestinal motility. While an increase in calcium initiates smooth muscle contraction, relaxation can be induced by cGMP or cAMP. cGMP-dependent protein kinase I (cGKI) has been suggested as a major mediator of the relaxant effects of both nucleotides. To study the biological role of cGKI and its postulated cross-activation by cAMP, we inactivated the gene coding for cGKI in mice. Loss of cGKI abolishes nitric oxide (NO)/cGMP-dependent relaxation of smooth muscle, resulting in severe vascular and intestinal dysfunctions. However, cGKI-deficient smooth muscle responded normally to cAMP, indicating that cAMP and cGMP signal via independent pathways, with cGKI being the specific mediator of the NO/cGMP effects in murine smooth muscle.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/deficiencia , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Contracción Muscular/genética , Músculo Liso/enzimología , Animales , Aorta Torácica , Separación Celular , Técnicas de Cultivo , AMP Cíclico/farmacología , GMP Cíclico/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fundus Gástrico/enzimología , Fundus Gástrico/fisiopatología , Motilidad Gastrointestinal/genética , Marcación de Gen , Mucosa Intestinal/enzimología , Mucosa Intestinal/fisiopatología , Ratones , Ratones Noqueados , Músculo Liso/fisiopatología , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/fisiopatología , Óxido Nítrico/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA