Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroimage ; 298: 120805, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173692

RESUMEN

The study of the neural substrates that serve conscious vision is one of the unsolved questions of cognitive neuroscience. So far, consciousness literature has endeavoured to disentangle which brain areas and in what order are involved in giving rise to visual awareness, but the problem of consciousness still remains unsolved. Availing of two different but complementary sources of data (i.e., Fast Optical Imaging and EEG), we sought to unravel the neural dynamics responsible for the emergence of a conscious visual experience. Our results revealed that conscious vision is characterized by a significant increase of activation in extra-striate visual areas, specifically in the Lateral Occipital Complex (LOC), and that, more interestingly, such activity occurred in the temporal window of the ERP component commonly thought to represent the electrophysiological signature of visual awareness, i.e., the Visual Awareness Negativity (VAN). Furthermore, Granger causality analysis, performed to further investigate the flow of activity occurring in the investigated areas, unveiled that neural processes relating to conscious perception mainly originated in LOC and subsequently spread towards visual and motor areas. In general, the results of the present study seem to advocate for an early contribution of LOC in conscious vision, thus suggesting that it could represent a reliable neural correlate of visual awareness. Conversely, striate visual areas, showing awareness-related activity only in later stages of stimulus processing, could be part of the cascade of neural events following awareness emergence.


Asunto(s)
Estado de Conciencia , Electroencefalografía , Lóbulo Occipital , Percepción Visual , Humanos , Estado de Conciencia/fisiología , Percepción Visual/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Lóbulo Occipital/fisiología , Lóbulo Occipital/diagnóstico por imagen , Corteza Visual Primaria/fisiología , Corteza Visual Primaria/diagnóstico por imagen , Mapeo Encefálico , Potenciales Evocados Visuales/fisiología , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen , Concienciación/fisiología
2.
Neuropsychologia ; 198: 108864, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38521150

RESUMEN

Early visual cortex (V1-V3) is believed to be critical for normal visual awareness by providing the necessary feedforward input. However, it remains unclear whether visual awareness can occur without further involvement of early visual cortex, such as re-entrant feedback. It has been challenging to determine the importance of feedback activity to these areas because of the difficulties in dissociating this activity from the initial feedforward activity. Here, we applied single-pulse transcranial magnetic stimulation (TMS) over the left posterior parietal cortex to elicit phosphenes in the absence of direct visual input to early visual cortex. Immediate neural activity after the TMS pulse was assessed using the event-related optical signal (EROS), which can measure activity under the TMS coil without artifacts. Our results show that: 1) The activity in posterior parietal cortex 50 ms after TMS was related to phosphene awareness, and 2) Activity related to awareness was observed in a small portion of V1 140 ms after TMS, but in contrast (3) Activity in V2 was a more robust correlate of awareness. Together, these results are consistent with interactive models proposing that sustained and recurrent loops of activity between cortical areas are necessary for visual awareness to emerge. In addition, we observed phosphene-related activations of the anteromedial cuneus and lateral occipital cortex, suggesting a functional network subserving awareness comprising these regions, the parietal cortex and early visual cortex.


Asunto(s)
Concienciación , Fosfenos , Estimulación Magnética Transcraneal , Corteza Visual , Humanos , Masculino , Femenino , Concienciación/fisiología , Adulto , Corteza Visual/fisiología , Adulto Joven , Fosfenos/fisiología , Percepción Visual/fisiología , Estimulación Luminosa , Lóbulo Parietal/fisiología , Mapeo Encefálico , Vías Visuales/fisiología
3.
Front Hum Neurosci ; 18: 1362742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516308

RESUMEN

Introduction: Low frequency (1 Hz) repetitive transcranial stimulation (rTMS) applied over right posterior parietal cortex (rPPC) has been shown to reduce cortical excitability both of the stimulated area and of the interconnected contralateral homologous areas. In the present study, we investigated the whole pattern of intra- and inter-hemispheric cortico-cortical connectivity changes induced by rTMS over rPPC. Methods: To do so, 14 healthy participants underwent resting state EEG recording before and after 30 min of rTMS at 1 Hz or sham stimulation over the rPPC (electrode position P6). Real stimulation was applied at 90% of motor threshold. Coherence values were computed on the electrodes nearby the stimulated site (i.e., P4, P8, and CP6) considering all possible inter- and intra-hemispheric combinations for the following frequency bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12Hz), low beta (12-20 Hz), high beta (20-30 Hz), and gamma (30-50 Hz). Results and discussion: Results revealed a significant increase in coherence in delta, theta, alpha and beta frequency bands between rPPC and the contralateral homologous sites. Moreover, an increase in coherence in theta, alpha, beta and gamma frequency bands was found between rPPC and right frontal sites, reflecting the activation of the fronto-parietal network within the right hemisphere. Summarizing, subthreshold rTMS over rPPC revealed cortico-cortical inter- and intra-hemispheric connectivity as measured by the increase in coherence among these areas. Moreover, the present results further confirm previous evidence indicating that the increase of coherence values is related to intra- and inter-hemispheric inhibitory effects of rTMS. These results can have implications for devising evidence-based rehabilitation protocols after stroke.

4.
Neuropsychologia ; 196: 108839, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401630

RESUMEN

The existence of unconscious visually triggered behavior in patients with cortical blindness (e.g., homonymous hemianopia) has been amply demonstrated and the neural bases of this phenomenon have been thoroughly studied. However, a crosstalk between the two hemispheres as a possible mechanism of unconscious or partially conscious vision has not been so far considered. Thus, the aim of this study was to assess the relationship between structural and functional properties of the corpus callosum (CC), as shown by probabilistic tractography (PT), behavioral detection/discrimination performance and level of perceptual awareness in the blind field of patients with hemianopia. Twelve patients were tested in two tasks with black-and-white visual square-wave gratings, one task of movement and the other of orientation. The stimuli were lateralized to one hemifield either intact or blind. A PT analysis was carried out on MRI data to extract fiber properties along the CC (genu, body, and splenium). Compared with a control group of participants without brain damage, patients showed lower FA values in all three CC sections studied. For the intact hemifield we found a significant correlation between PT values and visual detection/discrimination accuracy. For the blind hemifield the level of perceptual awareness correlated with PT values for all three CC sections in the movement task. Importantly, significant differences in all three CC sections were found also between patients with above-vs. chance detection/discrimination performance while differences in the genu were found between patients with and without perceptual awareness. Overall, our study provides evidence that the properties of CC fibers are related to the presence of unconscious stimulus detection/discrimination and to hints of perceptual awareness for stimulus presentation to the blind hemifield. These results underline the importance of information exchange between the damaged and the healthy hemisphere for possible partial or full recovery from hemianopia.


Asunto(s)
Ceguera Cortical , Hemianopsia , Humanos , Hemianopsia/diagnóstico por imagen , Cuerpo Calloso/diagnóstico por imagen , Percepción Visual , Inconsciencia , Estimulación Luminosa
5.
Psychophysiology ; 61(6): e14529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279560

RESUMEN

The visual system has long been considered equivalent across hemispheres. However, an increasing amount of data shows that functional differences may exist in this regard. We therefore tried to characterize the emergence of visual perception and the spatiotemporal dynamics resulting from the stimulation of visual cortices in order to detect possible interhemispheric asymmetries. Eighteen participants were tested. Each of them received 360 transcranial magnetic stimulation (TMS) pulses at phosphene threshold intensity over left and right early visual areas while electroencephalography was being recorded. After each single pulse, participants had to report the presence or absence of a phosphene. Local mean field power analysis of TMS-evoked potentials showed an effect of both site (left vs. right TMS) of stimulation and hemisphere (ipsilateral vs. contralateral to the TMS): while right TMS determined early stronger activations, left TMS determined later stronger activity in contralateral electrodes. The interhemispheric signal propagation index revealed differences in how TMS-evoked activity spreads: left TMS-induced activity diffused contralaterally more than right stimulation. With regard to phosphenes perception, distinct electrophysiological patterns were found to reflect similar perceptual experiences: left TMS-evoked phosphenes are associated with early occipito-parietal and frontal activity followed by late central activity; right TMS-evoked phosphenes determine only late, fronto-central, and parietal activations. Our results show that left and right occipital TMS elicits differential electrophysiological patterns in the brain, both per se and as a function of phosphene perception. These distinct activation patterns may suggest a different role of the two hemispheres in processing visual information and giving rise to perception.


Asunto(s)
Electroencefalografía , Lateralidad Funcional , Estimulación Magnética Transcraneal , Percepción Visual , Humanos , Masculino , Femenino , Adulto , Lateralidad Funcional/fisiología , Percepción Visual/fisiología , Adulto Joven , Corteza Visual/fisiología , Fosfenos/fisiología , Potenciales Evocados Visuales/fisiología , Mapeo Encefálico
6.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37960532

RESUMEN

(1) Background: Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) provides a unique opportunity to investigate brain connectivity. However, possible hemispheric asymmetries in signal propagation dynamics following occipital TMS have not been investigated. (2) Methods: Eighteen healthy participants underwent occipital single-pulse TMS at two different EEG sites, corresponding to early visual areas. We used a state-of-the-art Bayesian estimation approach to accurately estimate TMS-evoked potentials (TEPs) from EEG data, which has not been previously used in this context. To capture the rapid dynamics of information flow patterns, we implemented a self-tuning optimized Kalman (STOK) filter in conjunction with the information partial directed coherence (iPDC) measure, enabling us to derive time-varying connectivity matrices. Subsequently, graph analysis was conducted to assess key network properties, providing insight into the overall network organization of the brain network. (3) Results: Our findings revealed distinct lateralized effects on effective brain connectivity and graph networks after TMS stimulation, with left stimulation facilitating enhanced communication between contralateral frontal regions and right stimulation promoting increased intra-hemispheric ipsilateral connectivity, as evidenced by statistical test (p < 0.001). (4) Conclusions: The identified hemispheric differences in terms of connectivity provide novel insights into brain networks involved in visual information processing, revealing the hemispheric specificity of neural responses to occipital stimulation.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Humanos , Teorema de Bayes , Potenciales Evocados/fisiología , Estimulación Magnética Transcraneal , Encéfalo/fisiología
7.
Eur J Neurosci ; 57(12): 2136-2148, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042055

RESUMEN

The goal of this study was to investigate the neurophysiological correlates of visual awareness, with a specific focus on its event-related spectral perturbation (ERSP) features. To this aim, we tried to disentangle the proper neural correlates of consciousness (NCC) from other prerequisite and post-perceptual processing. To do so, we administered an orientation discrimination task, inducing a response bias through task instructions. EEG results showed that different frequency bands are involved in this kind of task, with different spectral and temporal dynamics. In particular, alpha and beta bands seem to be particularly engaged, especially in the aware-unaware contrast, showing a main power suppression for aware trials and replicating previous literature. Moreover, we demonstrated that the process of visual awareness is orchestrated by a complex interaction of different frequencies (i.e., theta, alpha, beta and gamma) being involved as prerequisites and post-perceptual processes.


Asunto(s)
Estado de Conciencia , Electroencefalografía , Estado de Conciencia/fisiología , Motivación , Estimulación Luminosa , Concienciación/fisiología
8.
Neurol Sci ; 44(7): 2251-2263, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36913147

RESUMEN

To date, there are quite a few studies assessing olfaction and gustation in blindness, with great variability in sample size, participants' age, blindness onset and smell and taste evaluation methods. Indeed, the evaluation of olfactory and gustatory performance can differ depending on several factors, including cultural differences. Therefore, here we analysed through a narrative review, all the works reporting a smell and taste assessment in blind individuals during the last 130 years, trying to summarize and address the knowledge in this field.


Asunto(s)
Trastornos del Olfato , Olfato , Humanos , Olfato/fisiología , Gusto/fisiología , Trastornos del Olfato/diagnóstico , Trastornos del Olfato/etiología , Percepción del Gusto/fisiología , Ceguera
9.
Artículo en Inglés | MEDLINE | ID: mdl-36293939

RESUMEN

Academic institutions have shown an increased interest in the so-called third mission to offer an impactful contribution to society. Indeed, public engagement programs ensure knowledge transfer and help to inspire positive public discourse. We aimed to propose a comprehensive framework for academic institutions planning to implement a public engagement intervention and to suggest potential indicators to measure its impact. To inform the framework development, we searched the literature on public engagement, the third mission, and design theory in electronic databases and additional sources (e.g., academic recommendations) and partnered with a communication agency offering non-academic advice. In line with this framework, we designed a public engagement intervention to foster scientific literacy in Italian youth, actively involving them in the development of the intervention. Our framework is composed of four phases (planning/design, implementation, immediate impact assessment, and medium- and long-term assessment). Impact indicators were subdivided into outcome variables that were immediately describable (e.g., changed understanding and awareness of the target population) and measurable only in the medium or long run (e.g., adoption of the intervention by other institutions). The framework is expected to maximize the impact of public engagement interventions and ultimately lead to better reciprocal listening and mutual understanding between academia and the public.


Asunto(s)
Organizaciones
10.
Neuropsychologia ; 149: 107673, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186572

RESUMEN

The general aim of this study was to assess the effect produced by visuo-spatial attention on both behavioural performance and brain activation in hemianopic patients following visual stimulus presentation to the blind hemifield. To do that, we tested five hemianopic patients and six age-matched healthy controls in an MRI scanner during the execution of a Posner-like paradigm using a predictive central cue. Participants were instructed to covertly orient attention toward the blind or sighted hemifield in different blocks while discriminating the orientation of a visual grating. In patients, we found significantly faster reaction times (RT) in valid and neutral than invalid trials not only in the sighted but also in the blind hemifield, despite the impairment of consciousness and performance at chance. As to the fMRI signal, in valid trials we observed the activation of ipsilesional visual areas (mainly lingual gyrus - area 19) during the orientation of attention toward the blind hemifield. Importantly, this activation was similar in patients and controls. In order to assess the related functional network, we performed a psychophysiological interactions (PPI) analysis that revealed an increased functional connectivity (FC) in patients with respect to controls between the ipsilesional lingual gyrus and ipsilateral fronto-parietal as well as contralesional parietal regions. Moreover, the shift of attention from the blind to the sighted hemifield revealed stronger FC between the contralesional visual areas V3/V4 and ipsilateral parietal regions in patients than controls. These results indicate a higher cognitive effort in patients when paying attention to the blind hemifiled or when shifting attention from the blind to the sighted hemfield, possibly as an attempt to compensate for the visual loss. Taken together, these results show that hemianopic patients can covertly orient attention toward the blind hemifield with a top-down mechanism by activating a functional network mainly including fronto-parietal regions belonging to the dorsal attentional network.


Asunto(s)
Ceguera , Hemianopsia , Ceguera/diagnóstico por imagen , Lateralidad Funcional , Hemianopsia/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Orientación , Lóbulo Parietal , Estimulación Luminosa , Tiempo de Reacción , Percepción Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA