Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 98(4): 046104, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17358790

RESUMEN

We have observed, by use of low-energy electron microscopy, the first direct evidence of self-driven polycrystallization evolved from a single nucleus in the case of epitaxial pentacene growth on the Si(111)-H terminated surface. In this Letter we demonstrate that such polycrystallization can develop in anisotropic systems (in terms of crystal structure and/or the intermolecular interactions) when kinetic growth conditions force the alignment of the intrinsic preferential growth directions along the density gradient of diffusing molecules. This finding gives new insight into the crystallization of complex molecular systems, elucidating the importance of nanoscale control of the growth conditions.

2.
Cell Mol Biol (Noisy-le-grand) ; 50(4): 329-34, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15529742

RESUMEN

Average growth rates of the (0 1 0) and (0 1 0) faces (R<0 1 0>) of monoclinic lysozyme crystals were measured in situ under 0.1 and 100 MPa. From the dependence of the growth rates on the lysozyme concentration, we determined the solubility of the crystal as a function of temperature at 0.1 and 100 MPa. The solubility increased with an increase in pressure. From the comparison between the growth rates under 0.1 and 100 MPa at the same supersaturation level, we found that the growth rates of the monoclinic lysozyme crystals kinetically increase with an increase in pressure. Supersaturation dependencies of the growth rates under 0.1 and 100 MPa were well fitted with a two-dimensional (2D) nucleation growth model of a birth-and-spread type. The fitting results suggest that the increase in the growth rates with pressure can be explained by the decrease in the average ledge surface energy of 2D island, the average distance between the kinks on a step and the activation energies in the incorporation processes of solute molecules.


Asunto(s)
Muramidasa/química , Presión , Animales , Pollos , Cristalización/instrumentación , Cristalización/métodos , Cinética , Solubilidad , Termodinámica
3.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 8): 1079-83, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10944360

RESUMEN

Orthorhombic crystals of hen egg-white (HEW) lysozyme were grown in a homogeneous and static magnetic field of 10 T. All crystals grown at 10 T were oriented such that their crystallographic c axes were parallel to the magnetic field direction and showed a narrower average full-width at half-maximum (FWHM) of the rocking curve than those grown at 0 T. Rocking-width measurements were made at the BL-10A station at the Photon Factory, Tsukuba, Japan, using a high-resolution vertical-type four-circle diffractometer. Crystal perfection was evaluated using the FWHM of the rocking curve; the effects of the magnetic field on the quality of the crystals were examined by comparison of the FWHM of seven crystals grown at 10 and 0 T. The FWHMs of the reflections along the a, b and c axes decreased by 23.5, 35.3 and 27.8%, respectively, and those of other general reflections decreased by 17.4-42.2% in the crystals grown at high magnetic field. These results clearly showed that a magnetic field of 10 T improved the crystal perfection of the orthorhombic lysozyme crystals. As a result, the maximum resolution of X-ray diffraction increased from 1.3 A at 0 T to 1.13 A at 10 T. The magnetic field also affected the dimensions of the unit cell, increments being 0.2% for the a and c axes and 0.1% for the b axis, respectively. These facts suggest that the application of a high magnetic field during crystallization might result in remarkable enhancements in the diffraction power of protein crystals having magnetic anisotropy.


Asunto(s)
Muramidasa/química , Animales , Pollos , Cristalización , Cristalografía por Rayos X , Femenino , Magnetismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA