Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(14): 12099-12117, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38994645

RESUMEN

The study of protein function and dynamics in their native cellular environment is essential for progressing fundamental science. To overcome the requirement of genetic modification of the protein or the limitations of dissociable fluorescent ligands, ligand-directed (LD) chemistry has most recently emerged as a complementary, bioorthogonal approach for labeling native proteins. Here, we describe the rational design, development, and application of the first ligand-directed chemistry approach for labeling the A1AR in living cells. We pharmacologically demonstrate covalent labeling of A1AR expressed in living cells while the orthosteric binding site remains available. The probes were imaged using confocal microscopy and fluorescence correlation spectroscopy to study A1AR localization and dynamics in living cells. Additionally, the probes allowed visualization of the specific localization of A1ARs endogenously expressed in dorsal root ganglion (DRG) neurons. LD probes developed here hold promise for illuminating ligand-binding, receptor signaling, and trafficking of the A1AR in more physiologically relevant environments.


Asunto(s)
Colorantes Fluorescentes , Receptor de Adenosina A1 , Ligandos , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A1/química , Humanos , Colorantes Fluorescentes/química , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Células HEK293 , Neuronas/metabolismo
2.
Elife ; 132024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976500

RESUMEN

New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Plasmodium vivax , Proteómica , Proteínas Protozoarias , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum/enzimología , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/enzimología , Plasmodium vivax/efectos de los fármacos , Humanos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteómica/métodos , Aminopeptidasas/metabolismo , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/química
3.
J Med Chem ; 67(15): 13286-13304, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39023902

RESUMEN

The M4 muscarinic acetylcholine receptor (mAChR) is a biological target for neurocognitive disorders. Compound 1 is an ago-PAM for the M4 mAChR. Herein, we report the design, synthesis, and evaluation of novel putative M4 mAChR PAMs based on 1. These analogs were screened and then fully characterized in two functional assays (GoB protein activation and CAMYEL activation) to quantify their allosteric and ago-PAM properties against ACh. A selection of 7 M4 PAMs were assessed for their ability to modulate ACh-mediated ß-arrestin recruitment and revealed 4 distinct clusters of M4 PAM activity: (1) analogs similar to 1 (24d), (2) analogs demonstrating only allosteric agonism (23d), (3) analogs with increased allosteric properties in CAMYEL activation (23b/23f and 24a/24b), and (4) analogs with a biased modulatory effect toward ß-arrestin recruitment (23i). These novel M4 chemical tools disclose discrete molecular determinants, allowing further interrogation of the therapeutic roles of cAMP and ß-arrestin pathways in neurocognitive disorders.


Asunto(s)
Piridinas , Receptor Muscarínico M4 , Regulación Alostérica/efectos de los fármacos , Humanos , Animales , Piridinas/farmacología , Piridinas/síntesis química , Piridinas/química , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/metabolismo , Cricetulus , Trastornos Neurocognitivos/tratamiento farmacológico , Trastornos Neurocognitivos/metabolismo , Células CHO , Relación Estructura-Actividad , Descubrimiento de Drogas , beta-Arrestinas/metabolismo , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Pirazoles/uso terapéutico
4.
Res Sq ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38746424

RESUMEN

New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum ( Pf A-M1) and Plasmodium vivax ( Pv A-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets Pf A-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on Pf A-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of Pf A-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.

5.
mBio ; 15(6): e0096624, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38717141

RESUMEN

To combat the global burden of malaria, development of new drugs to replace or complement current therapies is urgently required. Here, we show that the compound MMV1557817 is a selective, nanomolar inhibitor of both Plasmodium falciparum and Plasmodium vivax aminopeptidases M1 and M17, leading to inhibition of end-stage hemoglobin digestion in asexual parasites. MMV1557817 can kill sexual-stage P. falciparum, is active against murine malaria, and does not show any shift in activity against a panel of parasites resistant to other antimalarials. MMV1557817-resistant P. falciparum exhibited a slow growth rate that was quickly outcompeted by wild-type parasites and were sensitized to the current clinical drug, artemisinin. Overall, these results confirm MMV1557817 as a lead compound for further drug development and highlights the potential of dual inhibition of M1 and M17 as an effective multi-species drug-targeting strategy.IMPORTANCEEach year, malaria infects approximately 240 million people and causes over 600,000 deaths, mostly in children under 5 years of age. For the past decade, artemisinin-based combination therapies have been recommended by the World Health Organization as the standard malaria treatment worldwide. Their widespread use has led to the development of artemisinin resistance in the form of delayed parasite clearance, alongside the rise of partner drug resistance. There is an urgent need to develop and deploy new antimalarial agents with novel targets and mechanisms of action. Here, we report a new and potent antimalarial compound, known as MMV1557817, and show that it targets multiple stages of the malaria parasite lifecycle, is active in a preliminary mouse malaria model, and has a novel mechanism of action. Excitingly, resistance to MMV15578117 appears to be self-limiting, suggesting that development of the compound may provide a new class of antimalarial.


Asunto(s)
Aminopeptidasas , Antimaláricos , Plasmodium falciparum , Plasmodium vivax , Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Animales , Ratones , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/enzimología , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/metabolismo , Resistencia a Medicamentos , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Femenino
6.
Eur J Med Chem ; 258: 115588, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37423123

RESUMEN

Translation of muscarinic acetylcholine receptor (mAChR) agonists into clinically used therapeutic agents has been difficult due to their poor subtype selectivity. M4 mAChR subtype-selective positive allosteric modulators (PAMs) may provide better therapeutic outcomes, hence investigating their detailed pharmacological properties is crucial to advancing them into the clinic. Herein, we report the synthesis and comprehensive pharmacological evaluation of M4 mAChR PAMs structurally related to 1e, Me-C-c, [11C]MK-6884 and [18F]12. Our results show that small structural changes to the PAMs can result in pronounced differences to baseline, potency (pEC50) and maximum effect (Emax) measures in cAMP assays when compared to the endogenous ligand acetylcholine (ACh) without the addition of the PAMs. Eight selected PAMs were further assessed to determine their binding affinity and potential signalling bias profile between cAMP and ß-arrestin 2 recruitment. These rigorous analyses resulted in the discovery of the novel PAMs, 6k and 6l, which exhibit improved allosteric properties compared to the lead compound, and probative in vivo exposure studies in mice confirmed that they maintain the ability to cross the blood-brain barrier, making them more suitable for future preclinical assessment.


Asunto(s)
Acetilcolina , Receptores Muscarínicos , Ratones , Animales , Cricetinae , Regulación Alostérica , Receptores Muscarínicos/metabolismo , Acetilcolina/metabolismo , Piridinas/farmacología , Piridinas/química , Transducción de Señal , Células CHO
7.
Eur J Med Chem ; 248: 115051, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36634455

RESUMEN

Malaria remains a global health threat and growing resistance to artemisinin-based therapies calls for therapeutic agents with novel mechanisms of action. The Plasmodium spp M1 and M17 metalloaminopeptidases have been identified as attractive new antimalarial drug targets as inhibition of these enzymes results in antiplasmodial activity. Previously identified novel hydroxamic acid 2 as a moderate inhibitor of PfA-M1 and PfA-M17 and a potent inhibitor of P. falciparum. This study has sought to improve the enzymatic inhibitory properties in addition to increasing the drug-likeness of this scaffold by introducing polar moieties into the S1' region of the active site. Structural biology studies on the co-crystallised structures of potent dual-inhibitor 9aa bound to PfA-M1 and PfA-M17 have revealed that there are few direct interactions between the inhibitor and the S1' domain of these enzymes. Structure-based compound design led to the identification of a variety of novel hydroxamic acids that show improved inhibitory activity against PfA-M1 and PfA-M17, in addition to displaying antiplasmodial activity. Notably, compounds with substitutions on the aniline ring resulted in a loss of potency (Ki > 500 nM) toward PfA-M1 and PfA-M17. ioisosteric replacement of the S1-region biaryl ring system with a bromophenyl moiety resulted in increased potency compared to parent 9aa. Elaboration of 9aa to bioisosterically replace the S1 moiety with an aryl bromide, combined with substituted anilines has resulted in potent selective PfA-M1 inhibitors which show strong activity against Pf-3D7, with meta- and para-fluoroaniline groups of 15ag and 15ah forming hydrogen-bonds with residues within the active site. These findings establish the importance of the previously under-utilised S1' domain and will aid the design of future PfA-M1 and PfA-M17 inhibitors.


Asunto(s)
Antimaláricos , Malaria Falciparum , Plasmodium , Humanos , Plasmodium falciparum , Aminopeptidasas , Antimaláricos/química , Malaria Falciparum/tratamiento farmacológico
8.
J Med Chem ; 65(18): 12367-12385, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36099150

RESUMEN

Chronic pain and depression are both widely prevalent comorbid medical conditions. While efficient, µ-opioid receptor-based medications are associated with life-threatening side effects, including respiratory depression, dependence, and addiction. The δ-opioid receptor is a promising alternative biological target for chronic pain and depression due to its significantly reduced on-target side effects compared to the µ-opioid receptor. A previous study identified two δ-opioid receptor positive allosteric modulators. Herein, we report the design of five series of compounds targeting previously unexplored regions of the originally described SAR. Analogs were assessed for their ability to potentiate the agonist response of Leu-enkephalin. Of the 30 analogs, compound 6g displayed trends toward enhancing the ERK1/2 phosphorylation signaling compared to cAMP inhibition, while compound 11c exhibited a trend in shifting the signaling bias toward cAMP inhibition. Both 6g and 11c emerged as promising tool compounds toward the design of prospective therapeutics requiring specific downstream signaling attributes.


Asunto(s)
Dolor Crónico , Depresión , Receptores Opioides delta , Antidepresivos/química , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Depresión/tratamiento farmacológico , Encefalina Leucina/farmacología , Humanos , Receptores Opioides mu/agonistas , Xantenos/síntesis química , Xantenos/farmacología
9.
Elife ; 112022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36097817

RESUMEN

Plasmodium falciparum, the causative agent of malaria, remains a global health threat as parasites continue to develop resistance to antimalarial drugs used throughout the world. Accordingly, drugs with novel modes of action are desperately required to combat malaria. P. falciparum parasites infect human red blood cells where they digest the host's main protein constituent, hemoglobin. Leucine aminopeptidase PfA-M17 is one of several aminopeptidases that have been implicated in the last step of this digestive pathway. Here, we use both reverse genetics and a compound specifically designed to inhibit the activity of PfA-M17 to show that PfA-M17 is essential for P. falciparum survival as it provides parasites with free amino acids for growth, many of which are highly likely to originate from hemoglobin. We further show that loss of PfA-M17 results in parasites exhibiting multiple digestive vacuoles at the trophozoite stage. In contrast to other hemoglobin-degrading proteases that have overlapping redundant functions, we validate PfA-M17 as a potential novel drug target.


Malaria is a disease spread by mosquitoes. When infected insects bite the skin, they inject parasites called Plasmodium into the host. The symptoms of the disease then develop when Plasmodium infect host red blood cells. These parasites cannot make the raw materials to build their own proteins, so instead, they digest haemoglobin ­ the protein used by red blood cells to carry oxygen ­ and use its building blocks to produce proteins. Blocking the digestion of haemoglobin can stop malaria infections in their tracks, but it is unclear how exactly Plasmodium parasites break down the protein. Researchers think that a group of four enzymes called aminopeptidases are responsible for the final stage in this digestion, releasing the amino acids that make up haemoglobin. However, the individual roles of each of these aminopeptidases are not yet known. To start filling this gap, Edgar et al. set out to study one of these aminopeptidases, called PfA-M17. First, they genetically modified Plasmodium falciparum parasites so that the levels of this aminopeptidase were reduced during infection. Without the enzyme, the parasites were unable to grow. The next step was to confirm that this was because PfA-M17 breaks down haemoglobin, and not for another reason. To test this, Edgar et al. designed a new molecule that could stop PfA-M17 from releasing amino acids. This molecule, which they called 'compound 3', had the same effect as reducing the levels of PfA-M17. Further analysis showed that the amino acids that PfA- M17 releases match the amino acids found in haemoglobin. Malaria causes hundreds of thousands of deaths per year. Although there are treatments available, the Plasmodium parasites are starting to develop resistance. Confirming the role of PfA-M17 provides a starting point for new studies by parasitologists, biologists, and drug developers. This could lead to the development of chemicals that block this enzyme, forming the basis for new treatments.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Aminopeptidasas/química , Aminopeptidasas/genética , Digestión , Hemoglobinas , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Inhibidores de Proteasas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
10.
Pharm Res ; 39(10): 2405-2419, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35661084

RESUMEN

PURPOSE: The use of ionic liquids (ILs) in drug delivery has focused attention on non-toxic IL counterions. Cationic lipids can be used to form ILs with weakly acidic drugs to enhance drug loading in lipid-based formulations (LBFs). However, cationic lipids are typically toxic. Here we explore the use of lipoaminoacids (LAAs) as cationic IL counterions that degrade or digest in vivo to non-toxic components. METHODS: LAAs were synthesised via esterification of amino acids with fatty alcohols to produce potentially digestible cationic LAAs. The LAAs were employed to form ILs with tolfenamic acid (Tol) and the Tol ILs loaded into LBF and examined in vitro and in vivo. RESULTS: Cationic LAAs complexed with Tol to generate lipophilic Tol ILs with high drug loading in LBFs. Assessment of the LAA under simulated digestion conditions revealed that they were susceptible to enzymatic degradation under intestinal conditions, forming biocompatible FAs and amino acids. In vitro dispersion and digestion studies of Tol ILs revealed that formulations containing digestible Tol ILs were able to maintain drug dispersion and solubilisation whilst the LAA were breaking down under digesting conditions. Finally, in vivo oral bioavailability studies demonstrated that oral delivery of a LBF containing a Tol IL comprising a digestible cationic lipid counterion was able to successfully support effective oral delivery of Tol. CONCLUSIONS: Digestible LAA cationic lipids are potential IL counterions for weakly acidic drug molecules and digest in situ to form non-toxic breakdown products.


Asunto(s)
Líquidos Iónicos , Administración Oral , Aminoácidos , Cationes , Alcoholes Grasos , Líquidos Iónicos/química , Lípidos/química , Preparaciones Farmacéuticas/química , Solubilidad
11.
J Med Chem ; 65(13): 9076-9095, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35729775

RESUMEN

The adenosine A1 receptor is a therapeutic target based on its ability to provide cardioprotection during episodes of myocardial ischemia and reperfusion injury. However, the clinical translation of A1R agonists has been hindered by dose-limiting adverse effects (bradycardia and hypotension). Previously, we demonstrated that the bitopic agonist VCP746 (1), consisting of an adenosine pharmacophore linked to an allosteric moiety, can stimulate cardioprotective A1R signaling effects in the absence of unwanted bradycardia. This study maps the structure-activity relationships of 1 through modifications to the linker moiety. Derivatives differing in the flexibility, length, and nature of the linker were assessed, which revealed that the linker is tolerant of several modifications including added rigidity. Ligands featuring 1,4-disubstituted 1,2,3-triazoles were the most biased of the novel analogues but also displayed sub-nanomolar potency in a cAMP accumulation assay at the A2BR. To our knowledge, 10 is the most potent A2BR agonist published to date.


Asunto(s)
Bradicardia , Agonistas del Receptor Purinérgico P1 , Adenosina/farmacología , Agonistas del Receptor de Adenosina A1/farmacología , Humanos , Ligandos , Receptor de Adenosina A1 , Receptor de Adenosina A3 , Receptores Purinérgicos P1
12.
ACS Chem Neurosci ; 13(1): 97-111, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34905693

RESUMEN

Selective agonists for the human M1 and M4 muscarinic acetylcholine receptors (mAChRs) are attractive candidates for the treatment of cognitive disorders, such as Alzheimer's disease and schizophrenia. Past efforts to optimize a ligand for selective agonism at any one of the M1-M5 mAChR subtypes has proven to be a significant challenge. Recently, research efforts have demonstrated that hybrid ligands may offer a potential solution to the lack of selectivity at mAChRs. In an attempt to design M1 mAChR selective agonists by hybridizing an M1 mAChR selective positive allosteric modulator [1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid] and a potent agonist [(4-[(4,5-dihydro-3-isoxazolyl)oxy]-N,N,N-trimethyl-2-butyn-1-aminium iodide) (iperoxo)], we unexpectedly discovered that these ligands possessed noticeable M2/M4 mAChR selectivity. Evaluation of truncated derivatives of the hybrid ligands at the M1-M5 mAChR subtypes suggests that the allosteric pharmacophore of iperoxo-based mAChR hybrid ligands likely sterically disrupts the allosteric site of the mAChRs, attenuating the efficacy of M1/M3/M5 mAChR responses compared to M2/M4 mAChRs, resulting in a preference for the M2/M4 mAChRs. However, at certain intermediate linker lengths, the effects of this apparent disruption of the allosteric site are diminished, restoring nonselective agonism and suggesting a possible allosteric interaction which is favorable to efficacy at all M1-M5 mAChRs.


Asunto(s)
Isoxazoles , Receptor Muscarínico M1 , Regulación Alostérica , Animales , Células CHO , Cricetinae , Humanos , Ligandos , Compuestos de Amonio Cuaternario
13.
Nature ; 597(7877): 571-576, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497422

RESUMEN

The adenosine A1 receptor (A1R) is a promising therapeutic target for non-opioid analgesic agents to treat neuropathic pain1,2. However, development of analgesic orthosteric A1R agonists has failed because of a lack of sufficient on-target selectivity as well as off-tissue adverse effects3. Here we show that [2-amino-4-(3,5-bis(trifluoromethyl)phenyl)thiophen-3-yl)(4-chlorophenyl)methanone] (MIPS521), a positive allosteric modulator of the A1R, exhibits analgesic efficacy in rats in vivo through modulation of the increased levels of endogenous adenosine that occur in the spinal cord of rats with neuropathic pain. We also report the structure of the A1R co-bound to adenosine, MIPS521 and a Gi2 heterotrimer, revealing an extrahelical lipid-detergent-facing allosteric binding pocket that involves transmembrane helixes 1, 6 and 7. Molecular dynamics simulations and ligand kinetic binding experiments support a mechanism whereby MIPS521 stabilizes the adenosine-receptor-G protein complex. This study provides proof of concept for structure-based allosteric drug design of non-opioid analgesic agents that are specific to disease contexts.


Asunto(s)
Analgesia , Receptor de Adenosina A1/metabolismo , Adenosina/química , Adenosina/metabolismo , Regulación Alostérica/efectos de los fármacos , Analgesia/métodos , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/química , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Hiperalgesia/tratamiento farmacológico , Lípidos , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Estabilidad Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A1/química , Transducción de Señal/efectos de los fármacos
14.
Molecules ; 26(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206465

RESUMEN

(1) Background: Two first-in-class racemic dopamine D1 receptor (D1R) positive allosteric modulator (PAM) chemotypes (1 and 2) were identified from a high-throughput screen. In particular, due to its selectivity for the D1R and reported lack of intrinsic activity, compound 2 shows promise as a starting point toward the development of small molecule allosteric modulators to ameliorate the cognitive deficits associated with some neuropsychiatric disease states; (2) Methods: Herein, we describe the enantioenrichment of optical isomers of 2 using chiral auxiliaries derived from (R)- and (S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (d- and l-pantolactone, respectively); (3) Results: We confirm both the racemate and enantiomers of 2 are active and selective for the D1R, but that the respective stereoisomers show a significant difference in their affinity and magnitude of positive allosteric cooperativity with dopamine; (4) Conclusions: These data warrant further investigation of asymmetric syntheses of optically pure analogues of 2 for the development of D1R PAMs with superior allosteric properties.


Asunto(s)
Dopamina , Receptores de Dopamina D1 , Regulación Alostérica , Animales , Células CHO , Cricetulus , Dopamina/análogos & derivados , Dopamina/química , Dopamina/farmacología , Receptores de Dopamina D1/química , Receptores de Dopamina D1/metabolismo
15.
ChemMedChem ; 16(18): 2882-2894, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34159741

RESUMEN

Since the revelation of noscapine's weak anti-mitotic activity, extensive research has been conducted over the past two decades, with the goal of discovering noscapine derivatives with improved potency. To date, noscapine has been explored at the 1, 7, 6', and 9'-positions, though the 1,3-benzodioxole motif in the noscapine scaffold that remains unexplored. The present investigation describes the design, synthesis and pharmacological evaluation of noscapine analogues consisting of modifications to the 1,3-benzodioxole moiety. This includes expansion of the dioxolane ring and inclusion of metabolically robust deuterium and fluorine atoms. Favourable structural modifications were subsequently incorporated into multi-functionalised noscapine derivatives that also possessed modifications previously shown to promote anti-proliferative activity in the 1-, 6'- and 9'-positions. Our research efforts afforded the deuterated noscapine derivative 14 e and the dioxino-containing analogue 20 as potent cytotoxic agents with EC50 values of 1.50 and 0.73 µM, respectively, against breast cancer (MCF-7) cells. Compound 20 also exhibited EC50 values of <2 µM against melanoma, non-small cell lung carcinoma, and cancers of the brain, kidney and breast in an NCI screen. Furthermore, compounds 14 e and 20 inhibit tubulin polymerisation and are not vulnerable to the overexpression of resistance conferring P-gp efflux pumps in drug-resistant breast cancer cells (NCIADR/RES ). We also conducted X-ray crystallography studies that yielded the high-resolution structure of 14 e bound to tubulin. Our structural analysis revealed the key interactions between this noscapinoid and tubulin and will assist with the future design of noscapine derivatives with improved properties.


Asunto(s)
Antineoplásicos/farmacología , Dioxoles/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Dioxoles/síntesis química , Dioxoles/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Polimerizacion/efectos de los fármacos , Relación Estructura-Actividad , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Células Tumorales Cultivadas
16.
Pharm Res ; 38(6): 1125-1137, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34100217

RESUMEN

PURPOSE: Successful oral peptide delivery faces two major hurdles: low enzymatic stability in the gastro-intestinal lumen and poor intestinal membrane permeability. While lipid-based formulations (LBF) have the potential to overcome these barriers, effective formulation of peptides remains challenging. Lipophilic salt (LS) technology can increase the apparent lipophilicity of peptides, making them more suitable for LBF. METHODS: As a model therapeutic peptide, octreotide (OCT) was converted to the docusate LS (OCT.DoS2), and compared to the commercial acetate salt (OCT.OAc2) in oral absorption studies and related in vitro studies, including parallel artificial membrane permeability assay (PAMPA), Caco-2, in situ intestine perfusion, and simulated digestion in vitro models. The in vivo oral absorption of OCT.DoS2 and OCT.OAc2 formulated in self-emulsifying drug delivery systems (SEDDS) was studied in rats. RESULTS: LS formulation improved the solubility and loading of OCT in LBF excipients and OCT.DoS2 in combination with SEDDS showed higher OCT absorption than the acetate comparator in the in vivo studies in rats. The Caco-2 and in situ intestine perfusion models indicated no increases in permeability for OCT.DoS2. However, the in vitro digestion studies showed reduced enzymatic degradation of OCT.DoS2 when formulated in the SEDDS formulations. Further in vitro dissociation and release studies suggest that the enhanced bioavailability of OCT from SEDDS-incorporating OCT.DoS2 is likely a result of higher partitioning into and prolonged retention within lipid colloid structures. CONCLUSION: The combination of LS and LBF enhanced the in vivo oral absorption of OCT primarily via the protective effect of LBF sheltering the peptide from gastrointestinal degradation.


Asunto(s)
Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Excipientes/farmacocinética , Absorción Gastrointestinal/fisiología , Fármacos Gastrointestinales/farmacocinética , Octreótido/farmacocinética , Administración Oral , Animales , Células CACO-2 , Excipientes/administración & dosificación , Excipientes/síntesis química , Absorción Gastrointestinal/efectos de los fármacos , Fármacos Gastrointestinales/administración & dosificación , Fármacos Gastrointestinales/síntesis química , Humanos , Masculino , Octreótido/administración & dosificación , Octreótido/síntesis química , Ratas , Ratas Sprague-Dawley , Sales (Química)
17.
Eur J Med Chem ; 221: 113518, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34058708

RESUMEN

The emergence of Plasmodium falciparum resistance to frontline antimalarials, including artemisinin combination therapies, highlights the need for new molecules that act via novel mechanisms of action. Herein, we report the design, synthesis and antimalarial activity of a series of 2-aminobenzimidazoles, featuring a phenol moiety that is crucial to the pharmacophore. Two potent molecules exhibited IC50 values against P. falciparum 3D7 strain of 42 ± 4 (3c) and 43 ± 2 nM (3g), and high potency against strains resistant to chloroquine (Dd2), artemisinin (Cam3.IIC580Y) and PfATP4 inhibitors (SJ557733), while demonstrating no cytotoxicity against human cells (HEK293, IC50 > 50 µM). The most potent molecule, possessing a 4,5-dimethyl substituted phenol (3r) displayed an IC50 value of 6.4 ± 0.5 nM against P. falciparum 3D7, representing a 12-fold increase in activity from the parent molecule. The 2-aminobenzimidazoles containing a N1-substituted phenol represent a new class of molecules that have high potency in vitro against P. falciparum malaria and low cytotoxicity. They possessed attractive pharmaceutical properties, including low molecular weight, high ligand efficiency, high solubility, synthetic tractability and low in vitro clearance in human liver microsomes.


Asunto(s)
Antimaláricos/farmacología , Bencimidazoles/farmacología , Descubrimiento de Drogas , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Antimaláricos/química , Bencimidazoles/síntesis química , Bencimidazoles/química , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
18.
J Med Chem ; 64(10): 6670-6695, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33724031

RESUMEN

The adenosine A1 receptor (A1AR) is a G-protein-coupled receptor (GPCR) that provides important therapeutic opportunities for a number of conditions including congestive heart failure, tachycardia, and neuropathic pain. The development of A1AR-selective fluorescent ligands will enhance our understanding of the subcellular mechanisms underlying A1AR pharmacology facilitating the development of more efficacious and selective therapies. Herein, we report the design, synthesis, and application of a novel series of A1AR-selective fluorescent probes based on 8-functionalized bicyclo[2.2.2]octylxanthine and 3-functionalized 8-(adamant-1-yl) xanthine scaffolds. These fluorescent conjugates allowed quantification of kinetic and equilibrium ligand binding parameters using NanoBRET and visualization of specific receptor distribution patterns in living cells by confocal imaging and total internal reflection fluorescence (TIRF) microscopy. As such, the novel A1AR-selective fluorescent antagonists described herein can be applied in conjunction with a series of fluorescence-based techniques to foster understanding of A1AR molecular pharmacology and signaling in living cells.


Asunto(s)
Antagonistas del Receptor de Adenosina A1/síntesis química , Colorantes Fluorescentes/química , Receptor de Adenosina A1/química , Antagonistas del Receptor de Adenosina A1/metabolismo , Compuestos Bicíclicos con Puentes/química , Diseño de Fármacos , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Cinética , Ligandos , Octanos/química , Receptor de Adenosina A1/metabolismo , Relación Estructura-Actividad , Xantina/química , Xantina/metabolismo
19.
Int J Pharm ; 597: 120292, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33581479

RESUMEN

Lipid based formulations (LBFs) can enhance oral bioavailability, however, their utility may be restricted by low drug loading in the formulation. Converting drugs to drug-ionic liquids (drug-ILs) or lipophilic salts can significantly increase lipid solubility but this approach is complicated in some cases by salt disproportionation, leading to a reduction in solubility and physical instability. Here we explore the physical stability of the weakly basic model drug, cinnarizine (CIN), when paired with a decanoate counterion (Dec) to form the drug-IL, cinnarizine decanoate (CIN.Dec). Consistent with published studies of salt disproportionation in aqueous solution, weakly acidic counterions such as Dec lead to the generation of drug-IL lipid solutions with pHs below pHmax. This leads to CIN deprotonation to the less soluble free base and precipitation. Subsequent studies however, show that these effects can be reversed by acidification of the formulation (either with excess decanoic acid or other lipid soluble acids), stimulating a pH shift to the salt plateau of CIN.Dec and the formation of stable lipid solutions of CIN.Dec. Altering formulation pH to more acidic conditions, therefore stabilises drug-ILs formed using weakly acidic lipophilic counterions, and is a viable method to promote formulation stability via inhibition of disproportionation of some drug-ILs.


Asunto(s)
Cinarizina , Líquidos Iónicos , Lípidos , Sales (Química) , Solubilidad
20.
ChemMedChem ; 16(1): 216-233, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-32851779

RESUMEN

This study investigated the structure-activity relationships of 4-phenylpyridin-2-one and 6-phenylpyrimidin-4-one M1 muscarinic acetylcholine receptor (M1 mAChRs) positive allosteric modulators (PAMs). The presented series focuses on modifications to the core and top motif of the reported leads, MIPS1650 (1) and MIPS1780 (2). Profiling of our novel analogues showed that these modifications result in more nuanced effects on the allosteric properties compared to our previous compounds with alterations to the biaryl pendant. Further pharmacological characterisation of the selected compounds in radioligand binding, IP1 accumulation and ß-arrestin 2 recruitment assays demonstrated that, despite primarily acting as affinity modulators, the PAMs displayed different pharmacological properties across the two cellular assays. The novel PAM 7 f is a potential lead candidate for further development of peripherally restricted M1 PAMs, due to its lower blood-brain-barrier (BBB) permeability and improved exposure in the periphery compared to lead 2.


Asunto(s)
Piridonas/química , Receptor Muscarínico M1/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Semivida , Humanos , Ratones , Permeabilidad/efectos de los fármacos , Piridonas/metabolismo , Piridonas/farmacología , Receptor Muscarínico M1/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA