Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Food ; 2(4): 282-290, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37118460

RESUMEN

Global food system analyses call for an urgent transition to sustainable human diets but how this might be achieved within the current global food regime is poorly explored. Here we examine the factors that have fostered major dietary shifts across eight countries in the past 70 years. Guided by transition and food-regime theories, we draw on data from diverse disciplines, reviewing post-World War 2 shifts in consumption of three food commodities: farmed tilapia, milk and chicken. We show that large-scale shifts in commodity systems and diets have taken place when public-funded technological innovation is scaled-up by the private sector under supportive state and international policy regimes, highlighting pathways between commodity systems transformation and food-system transitions. Our analysis suggests that the desired sustainability transition will require public policy leadership and private-sector technological innovation alongside consumers who culturally value and can afford healthy, sustainable diets.

3.
PLoS One ; 15(1): e0227502, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31999705

RESUMEN

Effective management of marine systems requires quantitative tools that can assess the state of the marine social-ecological system and are responsive to management actions and pressures. We applied the Ocean Health Index (OHI) framework to retrospectively assess ocean health in British Columbia annually from 2001 to 2016 for eight goals that represent the values of British Columbia's coastal communities. We found overall ocean health improved over the study period, from 75 (out of 100) in 2001 to 83 in 2016, with scores for inhabited regions ranging from 68 (North Coast, 2002) to 87 (West Vancouver Island, 2011). Highest-scoring goals were Tourism & Recreation (average 94 over the period) and Habitat Services (100); lowest-scoring goals were Sense of Place (61) and Food Provision (64). Significant increases in scores over the time period occurred for Food Provision (+1.7 per year), Sense of Place (+1.4 per year), and Coastal Livelihoods (+0.6 per year), while Habitat Services (-0.01 per year) and Biodiversity (-0.09 per year) showed modest but statistically significant declines. From the results of our time-series analysis, we used the OHI framework to evaluate impacts of a range of management actions. Despite challenges in data availability, we found evidence for the ability of management to reduce pressures on several goals, suggesting the potential of OHI as a tool for assessing the effectiveness of marine resource management to improve ocean health. Our OHI assessment provides an important comprehensive evaluation of ocean health in British Columbia, and our open and transparent process highlights opportunities for improving accessibility of social and ecological data to inform future assessment and management of ocean health.


Asunto(s)
Monitoreo del Ambiente/estadística & datos numéricos , Océanos y Mares , Colombia Británica , Conservación de los Recursos Naturales
4.
Sci Rep ; 9(1): 11609, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406130

RESUMEN

Humans interact with the oceans in diverse and profound ways. The scope, magnitude, footprint and ultimate cumulative impacts of human activities can threaten ocean ecosystems and have changed over time, resulting in new challenges and threats to marine ecosystems. A fundamental gap in understanding how humanity is affecting the oceans is our limited knowledge about the pace of change in cumulative impact on ocean ecosystems from expanding human activities - and the patterns, locations and drivers of most significant change. To help address this, we combined high resolution, annual data on the intensity of 14 human stressors and their impact on 21 marine ecosystems over 11 years (2003-2013) to assess pace of change in cumulative impacts on global oceans, where and how much that pace differs across the ocean, and which stressors and their impacts contribute most to those changes. We found that most of the ocean (59%) is experiencing significantly increasing cumulative impact, in particular due to climate change but also from fishing, land-based pollution and shipping. Nearly all countries saw increases in cumulative impacts in their coastal waters, as did all ecosystems, with coral reefs, seagrasses and mangroves at most risk. Mitigation of stressors most contributing to increases in overall cumulative impacts is urgently needed to sustain healthy oceans.


Asunto(s)
Actividades Humanas , Océanos y Mares , Contaminación del Agua , Conservación de los Recursos Naturales/métodos , Humanos
5.
Nat Ecol Evol ; 1(6): 160, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28812630

RESUMEN

Reproducibility has long been a tenet of science but has been challenging to achieve-we learned this the hard way when our old approaches proved inadequate to efficiently reproduce our own work. Here we describe how several free software tools have fundamentally upgraded our approach to collaborative research, making our entire workflow more transparent and streamlined. By describing specific tools and how we incrementally began using them for the Ocean Health Index project, we hope to encourage others in the scientific community to do the same-so we can all produce better science in less time.

6.
PLoS One ; 12(7): e0178267, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28678881

RESUMEN

Growing international and national focus on quantitatively measuring and improving ocean health has increased the need for comprehensive, scientific, and repeated indicators to track progress towards achieving policy and societal goals. The Ocean Health Index (OHI) is one of the few indicators available for this purpose. Here we present results from five years of annual global assessment for 220 countries and territories, evaluating potential drivers and consequences of changes and presenting lessons learned about the challenges of using composite indicators to measure sustainability goals. Globally scores have shown little change, as would be expected. However, individual countries have seen notable increases or declines due in particular to improvements in the harvest and management of wild-caught fisheries, the creation of marine protected areas (MPAs), and decreases in natural product harvest. Rapid loss of sea ice and the consequent reduction of coastal protection from that sea ice was also responsible for declines in overall ocean health in many Arctic and sub-Arctic countries. The OHI performed reasonably well at predicting near-term future scores for many of the ten goals measured, but data gaps and limitations hindered these predictions for many other goals. Ultimately, all indicators face the substantial challenge of informing policy for progress toward broad goals and objectives with insufficient monitoring and assessment data. If countries and the global community hope to achieve and maintain healthy oceans, we will need to dedicate significant resources to measuring what we are trying to manage.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Fenómenos Ecológicos y Ambientales , Ecosistema , Explotaciones Pesqueras/estadística & datos numéricos , Algoritmos , Cambio Climático , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Explotaciones Pesqueras/tendencias , Geografía , Humanos , Concentración de Iones de Hidrógeno , Internacionalidad , Biología Marina/métodos , Biología Marina/estadística & datos numéricos , Biología Marina/tendencias , Modelos Teóricos , Océanos y Mares , Agua de Mar/química
7.
PLoS One ; 12(5): e0175739, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28467508

RESUMEN

Species distribution data provide the foundation for a wide range of ecological research studies and conservation management decisions. Two major efforts to provide marine species distributions at a global scale are the International Union for Conservation of Nature (IUCN), which provides expert-generated range maps that outline the complete extent of a species' distribution; and AquaMaps, which provides model-generated species distribution maps that predict areas occupied by the species. Together these databases represent 24,586 species (93.1% within AquaMaps, 16.4% within IUCN), with only 2,330 shared species. Differences in intent and methodology can result in very different predictions of species distributions, which bear important implications for scientists and decision makers who rely upon these datasets when conducting research or informing conservation policy and management actions. Comparing distributions for the small subset of species with maps in both datasets, we found that AquaMaps and IUCN range maps show strong agreement for many well-studied species, but our analysis highlights several key examples in which introduced errors drive differences in predicted species ranges. In particular, we find that IUCN maps greatly overpredict coral presence into unsuitably deep waters, and we show that some AquaMaps computer-generated default maps (only 5.7% of which have been reviewed by experts) can produce odd discontinuities at the extremes of a species' predicted range. We illustrate the scientific and management implications of these tradeoffs by repeating a global analysis of gaps in coverage of marine protected areas, and find significantly different results depending on how the two datasets are used. By highlighting tradeoffs between the two datasets, we hope to encourage increased collaboration between taxa experts and large scale species distribution modeling efforts to further improve these foundational datasets, helping to better inform science and policy recommendations around understanding, managing, and protecting marine biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Biología Marina , Animales , Modelos Teóricos , Ursidae
8.
Ecol Appl ; 26(3): 651-63, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27411240

RESUMEN

Scientists and resource managers often use methods and tools that assume ecosystem components respond linearly to environmental drivers and human stressors. However, a growing body of literature demonstrates that many relationships are-non-linear, where small changes in a driver prompt a disproportionately large ecological response. We aim to provide a comprehensive assessment of the relationships between drivers and ecosystem components to identify where and when non-linearities are likely to occur. We focused our analyses on one of the best-studied marine systems, pelagic ecosystems, which allowed us to apply robust statistical techniques on a large pool of previously published studies. In this synthesis, we (1) conduct a wide literature review on single driver-response relationships in pelagic systems, (2) use statistical models to identify the degree of non-linearity in these relationships, and (3) assess whether general patterns exist in the strengths and shapes of non-linear relationships across drivers. Overall we found that non-linearities are common in pelagic ecosystems, comprising at least 52% of all driver-response relation- ships. This is likely an underestimate, as papers with higher quality data and analytical approaches reported non-linear relationships at a higher frequency (on average 11% more). Consequently, in the absence of evidence for a linear relationship, it is safer to assume a relationship is non-linear. Strong non-linearities can lead to greater ecological and socioeconomic consequences if they are unknown (and/or unanticipated), but if known they may provide clear thresholds to inform management targets. In pelagic systems, strongly non-linear relationships are often driven by climate and trophodynamic variables but are also associated with local stressors, such as overfishing and pollution, that can be more easily controlled by managers. Even when marine resource managers cannot influence ecosystem change, they can use information about threshold responses to guide how other stressors are managed and to adapt to new ocean conditions. As methods to detect and reduce uncertainty around threshold values improve, managers will be able to better understand and account for ubiquitous non-linear relationships.


Asunto(s)
Ecosistema , Biología Marina/métodos , Modelos Biológicos , Océanos y Mares , Animales , Biomasa , Bases de Datos Factuales , Densidad de Población
9.
PeerJ ; 3: e1503, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26713251

RESUMEN

Marine policy is increasingly calling for maintaining or restoring healthy oceans while human activities continue to intensify. Thus, successful prioritization and management of competing objectives requires a comprehensive assessment of the current state of the ocean. Unfortunately, assessment frameworks to define and quantify current ocean state are often site-specific, limited to a few ocean components, and difficult to reproduce in different geographies or even through time, limiting spatial or temporal comparisons as well as the potential for shared learning. Ideally, frameworks should be tailorable to accommodate use in disparate locations and contexts, removing the need to develop frameworks de novo and allowing efforts to focus on the assessments themselves to advise action. Here, we present some of our experiences using the Ocean Health Index (OHI) framework, a tailorable and repeatable approach that measures health of coupled human-ocean ecosystems in different contexts by accommodating differences in local environmental characteristics, cultural priorities, and information availability and quality. Since its development in 2012, eleven assessments using the OHI framework have been completed at global, national, and regional scales, four of which have been led by independent academic or government groups. We have found the following to be best practices for conducting assessments: Incorporate key characteristics and priorities into the assessment framework design before gathering information; Strategically define spatial boundaries to balance information availability and decision-making scales; Maintain the key characteristics and priorities of the assessment framework regardless of information limitations; and Document and share the assessment process, methods, and tools. These best practices are relevant to most ecosystem assessment processes, but also provide tangible guidance for assessments using the OHI framework. These recommendations also promote transparency around which decisions were made and why, reproducibility through access to detailed methods and computational code, repeatability via the ability to modify methods and computational code, and ease of communication to wide audiences, all of which are critical for any robust assessment process.

10.
PLoS One ; 10(3): e0117863, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774678

RESUMEN

International and regional policies aimed at managing ocean ecosystem health need quantitative and comprehensive indices to synthesize information from a variety of sources, consistently measure progress, and communicate with key constituencies and the public. Here we present the second annual global assessment of the Ocean Health Index, reporting current scores and annual changes since 2012, recalculated using updated methods and data based on the best available science, for 221 coastal countries and territories. The Index measures performance of ten societal goals for healthy oceans on a quantitative scale of increasing health from 0 to 100, and combines these scores into a single Index score, for each country and globally. The global Index score improved one point (from 67 to 68), while many country-level Index and goal scores had larger changes. Per-country Index scores ranged from 41-95 and, on average, improved by 0.06 points (range -8 to +12). Globally, average scores increased for individual goals by as much as 6.5 points (coastal economies) and decreased by as much as 1.2 points (natural products). Annual updates of the Index, even when not all input data have been updated, provide valuable information to scientists, policy makers, and resource managers because patterns and trends can emerge from the data that have been updated. Changes of even a few points indicate potential successes (when scores increase) that merit recognition, or concerns (when scores decrease) that may require mitigative action, with changes of more than 10-20 points representing large shifts that deserve greater attention. Goal scores showed remarkably little covariance across regions, indicating low redundancy in the Index, such that each goal delivers information about a different facet of ocean health. Together these scores provide a snapshot of global ocean health and suggest where countries have made progress and where a need for further improvement exists.


Asunto(s)
Fenómenos Ecológicos y Ambientales , Ecosistema , Océanos y Mares , Conservación de los Recursos Naturales , Explotaciones Pesqueras , Internacionalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA