Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gastro Hep Adv ; 2(3): 307-321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-39132655

RESUMEN

Background and Aims: Fibrolamellar carcinoma (FLC) is a rare, difficult-to-treat liver cancer primarily affecting pediatric and adolescent patients, and for which precision medicine approaches have historically not been possible. The DNAJB1-PRKACA gene fusion was identified as a driver of FLC pathogenesis. We aimed to assess whether FLC tumors maintain dependency on this gene fusion and determine if PRKACA is a viable therapeutic target. Methods: FLC patient-derived xenograft (PDX) shRNA cell lines were implanted subcutaneously into female NOD-SCID mice and tumors were allowed to develop prior to randomization to doxycycline (to induce knockdown) or control groups. Tumor development was assessed every 2 days. To assess the effect of treatment with novel selective PRKACA small molecule kinase inhibitors, BLU0588 and BLU2864, FLC PDX tumor cells were implanted subcutaneously into NOD-SCID mice and tumors allowed to develop. Mice were randomized to treatment (BLU0588 and BLU2864, orally, once daily) or control groups and tumor size determined as previously. Results: Knockdown of DNAJB1-PRKACA reversed a FLC-specific gene signature and reduced PDX tumor growth in mice compared to the control group. Furthermore, FLC PDX tumor growth was significantly reduced with BLU0588 and BLU2864 treatment vs control (P = .003 and P = .0005, respectively). Conclusion: We demonstrated, using an inducible knockdown and small molecule approaches, that FLC PDX tumors were dependent upon DNAJB1-PRKACA fusion activity. In addition, this study serves as a proof-of-concept that PRKACA is a viable therapeutic target for FLC and warrants further investigation.

2.
Proc Natl Acad Sci U S A ; 107(41): 17774-9, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20876099

RESUMEN

The α-, ß-, and γ-protocadherins (Pcdhα, Pcdhß, and Pcdhγ) comprise a large family of single-pass transmembrane proteins predominantly expressed in the nervous system. These proteins contain six cadherin-like extracellular domains, and proteolysis of Pcdhα and Pcdhγ by the γ-secretase complex releases their intracellular domains into the cytoplasm where they may function locally and/or enter the nucleus and affect gene expression. Thus, cleavage of Pcdhs may function to link intercellular contacts and intracellular signaling. Here we report that shedding of the Pcdhα extracellular domain and subsequent processing by γ-secretase require endocytosis and that Pcdhs interact with the regulator of vesicular sorting ESCRT-0 in undifferentiated cells. We also find that the accumulation of Pcdh cleavage products is regulated during development. Differentiation leads to an increase in the interactions between Pcdh proteins and a decrease in the accumulation of cleavage products. We conclude that Pcdh processing requires endocytosis and that the level of cleavage products is regulated during neuronal differentiation.


Asunto(s)
Cadherinas/metabolismo , Diferenciación Celular/fisiología , Endocitosis/fisiología , Neuronas/fisiología , Péptido Hidrolasas/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Western Blotting , Línea Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Ratones , Neuronas/citología , Plásmidos/genética , Estructura Terciaria de Proteína , Transducción de Señal/fisiología
3.
Proc Natl Acad Sci U S A ; 107(31): 13894-9, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20616001

RESUMEN

The clustered protocadherins (Pcdhs) are a large family of cadherin-like transmembrane proteins expressed in the nervous system. Stochastic expression of Pcdh genes and alternative splicing of their pre-mRNAs have the potential to generate enormous protein diversity at the cell surface of neurons. At present, the regulation and function of Pcdh proteins are largely unknown. Here, we show that Pcdhs form a heteromeric signaling complex(es), consisting of multiple Pcdh isoforms, receptor tyrosine kinases, phosphatases, and cell adhesion molecules. In particular, we find that the receptor tyrosine kinase rearranged during transformation (Ret) binds to Pcdhs in differentiated neuroblastoma cells and is required for stabilization and differentiation-induced phosphorylation of Pcdh proteins. In addition, the Ret ligand glial cell line-derived neurotrophic factor induces phosphorylation of Pcdhgamma in motor neurons and phosphorylation of Pcdhalpha and Pcdhgamma in sympathetic neurons. Conversely, Pcdh proteins are also required for the stabilization of activated Ret in neuroblastoma cells and sympathetic ganglia. Thus, Pcdhs and Ret are functional components of a phosphorylation-dependent signaling complex.


Asunto(s)
Cadherinas/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Cromatografía de Afinidad , Activación Enzimática , Estabilidad de Enzimas , Ratones , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-ret/genética , Transducción de Señal
4.
J Biol Chem ; 280(12): 11101-6, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15659381

RESUMEN

The mammalian target of rapamycin, mTOR, is a Ser/Thr kinase that promotes cell growth and proliferation by activating ribosomal protein S6 kinase 1 (S6K1). We previously identified a conserved TOR signaling (TOS) motif in the N terminus of S6K1 that is required for its mTOR-dependent activation. Furthermore, our data suggested that the TOS motif suppresses an inhibitory function associated with the C terminus of S6K1. Here, we have characterized the mTOR-regulated inhibitory region within the C terminus. We have identified a conserved C-terminal "RSPRR" sequence that is responsible for an mTOR-dependent suppression of S6K1 activation. Deletion or mutations within this RSPRR motif partially rescue the kinase activity of the S6K1 TOS motif mutant (S6K1-F5A), and this rescued activity is rapamycin resistant. Furthermore, we have shown that the RSPRR motif significantly suppresses S6K1 phosphorylation at two phosphorylation sites (Thr-389 and Thr-229) that are crucial for S6K1 activation. Importantly, introducing both the Thr-389 phosphomimetic and RSPRR motif mutations into the catalytically inactive S6K1 mutant S6K1-F5A completely rescues its activity and renders it fully rapamycin resistant. These data show that the N-terminal TOS motif suppresses an inhibitory function mediated by the C-terminal RSPRR motif. We propose that the RSPRR motif interacts with a negative regulator of S6K1 that is normally suppressed by mTOR.


Asunto(s)
Proteínas Quinasas/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/química , Sirolimus/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Humanos , Datos de Secuencia Molecular , Fosforilación , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR
5.
Semin Cell Dev Biol ; 15(2): 147-59, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15209374

RESUMEN

Regulation of growth and proliferation in higher eukaryotic cells results from an integration of nutritional, energy, and mitogenic signals. Biochemical processes underlying cell growth and proliferation are governed by the phosphatidylinositol 3-kinase (PI3K) and target of rapamycin (TOR) signaling pathways. The importance of the interplay between these two pathways is underscored by the discovery that the TOR inhibitor rapamycin is effective against tumors caused by misregulation of the PI3K pathway. We review here recent data concerning the convergence of the PI3K and TOR pathways, the role of these pathways in cell growth and proliferation, and the regulation of growth by downstream TOR targets.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Animales , División Celular/efectos de los fármacos
6.
Curr Biol ; 13(10): 797-806, 2003 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-12747827

RESUMEN

BACKGROUND: The mammalian target of rapamycin, mTOR, is a serine/threonine kinase that controls cell growth and proliferation via the translation regulators eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). We recently identified a TOR signaling (TOS) motif in the N terminus of S6K1 and the C terminus of 4E-BP1 and demonstrated that in S6K1, the TOS motif is necessary to facilitate mTOR signaling to phosphorylate and activate S6K1. However, it is unclear how the TOS motif in S6K1 and 4E-BP1 mediates mTOR signaling. RESULTS: Here, we show that a functional TOS motif is required for 4E-BP1 to bind to raptor (a recently identified mTOR-interacting protein), for 4E-BP1 to be efficiently phosphorylated in vitro by the mTOR/raptor complex, and for 4E-BP1 to be phosphorylated in vivo at all identified mTOR-regulated sites. mTOR/raptor-regulated phosphorylation is necessary for 4E-BP's efficient release from the translational initiation factor eIF4E. Consistently, overexpression of a mutant of 4E-BP1 containing a single amino acid change in the TOS motif (F114A) reduces cell size, demonstrating that mTOR-dependent regulation of cell growth by 4E-BP1 is dependent on a functional TOS motif. CONCLUSIONS: Our data demonstrate that the TOS motif functions as a docking site for the mTOR/raptor complex, which is required for multisite phosphorylation of 4E-BP1, eIF4E release from 4E-BP1, and cell growth.


Asunto(s)
Proteínas Portadoras/metabolismo , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Línea Celular , Línea Celular Tumoral , Tamaño de la Célula , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas/química , Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína Reguladora Asociada a mTOR , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR , Transfección
7.
Curr Biol ; 12(8): 632-9, 2002 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-11967149

RESUMEN

BACKGROUND: The mammalian target of rapamycin (mTOR) controls the translation machinery via activation of S6 kinases 1 and 2 (S6K1/2) and inhibition of the eukaryotic initiation factor 4E (eIF4E) binding proteins 1, 2, and 3 (4E-BP1/2/3). S6K1 and 4E-BP1 are regulated by nutrient-sensing and mitogen-activated pathways. The molecular basis of mTOR regulation of S6K1 and 4E-BP1 remains controversial. RESULTS: We have identified a conserved TOR signaling (TOS) motif in the N terminus of all known S6 kinases and in the C terminus of the 4E-BPs that is crucial for phosphorylation and regulation S6K1 and 4E-BP1 activities. Deletion or mutations within the TOS motif significantly inhibit S6K1 activation and the phosphorylation of its hydrophobic motif, Thr389. In addition, this sequence is required to suppress an inhibitory activity mediated by the S6K1 C terminus. The TOS motif is essential for S6K1 activation by mTOR, as mutations in this motif mimic the effect of rapamycin on S6K1 phosphorylation, and render S6K1 insensitive to changes in amino acids. Furthermore, only overexpression of S6K1 with an intact TOS motif prevents 4E-BP1 phosphorylation by a common mTOR-regulated modulator of S6K1 and 4E-BP1. CONCLUSIONS: S6K1 and 4E-BP1 contain a conserved five amino acid sequence (TOS motif) that is crucial for their regulation by the mTOR pathway. mTOR seems to regulate S6K1 by two distinct mechanisms. The TOS motif appears to function as a docking site for either mTOR itself or a common upstream activator of S6K1 and 4E-BP1.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Secuencia Conservada , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Línea Celular , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Mutación , Fosfoproteínas/genética , Fosforilación , Fosfotreonina/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas S6 Ribosómicas/genética , Homología de Secuencia de Aminoácido , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA