Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(10): e0100723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800961

RESUMEN

Bacteriophages are viruses that infect and kill bacteria. Currently, phage products are available for the control of the pathogen Listeria monocytogenes in food products in the United States. In this study, we explore whether experimental evolution can be used to generate phages with improved abilities to function under specific food-relevant conditions. Ultra-pasteurized oat and whole milk were chosen as test matrices as they represent different food groups, yet have similar physical traits and macronutrient composition. We showed that (i) wild-type phage LP-125 infection kinetics are different in the two matrices and (ii) LP-125 has a significantly higher burst size in oat milk. From this, we attempted to evolve LP-125 to have improved infection kinetics in whole milk. Ancestral LP-125 was passaged through 10 rounds of amplification in milk conditions. Plaque-purified DNA samples from milk-selected phages were isolated and sequenced, and mutations present in the isolated phages were identified. We found two nonsynonymous substitutions in LP125_108 and LP125_112 genes, which encode putative baseplate-associated glycerophosphoryl diester phosphodiesterase and baseplate protein, respectively. Protein structural modeling showed that the substituted amino acids in the mutant phages are predicted to localize to surface-exposed helices on the corresponding structures, which might affect the surface charge of proteins and their interaction with the bacterial cell. The phage containing the LP125_112 mutation adsorbed significantly faster than the ancestral phage in both oat and whole milk. Follow-up experiments suggest that fat content may be a key factor for the expression of the phenotype of this mutation. IMPORTANCE Bacteriophages are one of the tools available to control the foodborne pathogen, Listeria monocytogenes. Phage products must work under a broad range of food conditions to be an effective control for L. monocytogenes. Here, we show that the experimental evolution of phages can be used to generate new phages with phenotypes useful under specific conditions. We used this approach to select for a mutant phage that more efficiently binds to L. monocytogenes that is grown in whole milk and oat milk. We show that the fat content of these milks is necessary for the expression of this phenotype. Our findings show that experimental evolution can be used to select for improved phages with better performance under specific conditions. This approach has the potential to support the development of condition-specific phage-based biocontrols in the food industry.


Asunto(s)
Bacteriófagos , Listeria monocytogenes , Listeria , Listeria/genética , Bacteriófagos/genética , Listeria monocytogenes/genética , Industria de Alimentos , Fenotipo
2.
Sci Rep ; 12(1): 9137, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650389

RESUMEN

Recently, a new Listeria species, "Listeria swaminathanii", was proposed. Here, we phenotypically and genotypically characterize two additional strains that were previously obtained from soil samples and compare the results to the type strain. Complete genomes for both strains were assembled from hybrid Illumina and Nanopore sequencing reads and annotated. Further genomic analysis including average nucleotide identity (ANI) and detection of mobile genetic elements and genes of interest (e.g., virulence-associated) were conducted. The strains showed 98.7-98.8% ANI with the type strain. The UTK C1-0015 genome contained a partial monocin locus and a plasmid, while the UTK C1-0024 genome contained a full monocin locus and a prophage. Phenotypic characterization consistent with those performed on the proposed type strain was conducted to assess consistency of phenotypes across a greater diversity of the proposed species (n = 3 instead of n = 1). Only a few findings were notably different from those of the type strain, such as catalase activity, glycerol metabolism, starch metabolism, and growth at 41 °C. This study further expands our understanding of this newly proposed sensu stricto Listeria species.


Asunto(s)
Genoma Bacteriano , Listeria , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Listeria/genética , Fenotipo , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA