Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
New Phytol ; 243(6): 2130-2145, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39049585

RESUMEN

Coral thermal bleaching resilience can be improved by enhancing photosymbiont thermal tolerance via experimental evolution. While successful for some strains, selection under stable temperatures was ineffective at increasing the thermal threshold of an already thermo-tolerant photosymbiont (Durusdinium trenchii). Corals from environments with fluctuating temperatures tend to have comparatively high heat tolerance. Therefore, we investigated whether exposure to temperature oscillations can raise the upper thermal limit of D. trenchii. We exposed a D. trenchii strain to stable and fluctuating temperature profiles, which varied in oscillation frequency. After 2.1 yr (54-73 generations), we characterised the adaptive responses under the various experimental evolution treatments by constructing thermal performance curves of growth from 21 to 31°C for the heat-evolved and wild-type lineages. Additionally, the accumulation of extracellular reactive oxygen species, photophysiology, photosynthesis and respiration rates were assessed under increasing temperatures. Of the fluctuating temperature profiles investigated, selection under the most frequent oscillations (diurnal) induced the greatest widening of D. trenchii's thermal niche. Continuous selection under elevated temperatures induced the only increase in thermal optimum and a degree of generalism. Our findings demonstrate how differing levels of thermal homogeneity during selection drive unique adaptive responses to heat in a coral photosymbiont.


Asunto(s)
Antozoos , Fotosíntesis , Selección Genética , Simbiosis , Temperatura , Animales , Antozoos/fisiología , Antozoos/efectos de la radiación , Simbiosis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Termotolerancia/fisiología
2.
Trends Microbiol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38942718

RESUMEN

The heat tolerance of corals is largely determined by their microbial photosymbionts (Symbiodiniaceae, colloquially known as zooxanthellae). Therefore, manipulating symbiont communities may enhance the ability of corals to survive summer heatwaves. Although heat-tolerant and -sensitive symbiont species occur in nature, even corals that harbour naturally tolerant symbionts have been observed to bleach during summer heatwaves. Experimental evolution (i.e., laboratory selection) of Symbiodiniaceae cultures under elevated temperatures has been successfully used to enhance their upper thermal tolerance, both in vitro and, in some instances, following their reintroduction into corals. In this review, we present the state of this intervention and its potential role within coral reef restoration, and discuss the next critical steps required to bridge the gap to implementation.

3.
Evol Appl ; 16(9): 1549-1567, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37752965

RESUMEN

Despite the relevance of heat-evolved microalgal endosymbionts to coral reef restoration, to date, few Symbiodiniaceae strains have been thermally enhanced via experimental evolution. Here, we investigated whether the thermal tolerance of Symbiodiniaceae can be increased through chemical mutagenesis followed by thermal selection. Strains of Durusdinium trenchii, Fugacium kawagutii and Symbiodinium pilosum were exposed to ethyl methanesulfonate to induce random mutagenesis, and then underwent thermal selection at high temperature (31/33°C). After 4.6-5 years of experimental evolution, the in vitro thermal tolerance of these strains was assessed via reciprocal transplant experiments to ambient (27°C) and elevated (31/35°C) temperatures. Growth, photosynthetic efficiency, oxidative stress and nutrient use were measured to compare thermal tolerance between strains. Heat-evolved D. trenchii, F. kawagutii and S. pilosum strains all exhibited increased photosynthetic efficiency under thermal stress. However, trade-offs in growth rates were observed for the heat-evolved D. trenchii lineage at both ambient and elevated temperatures. Reduced phosphate and nitrate uptake rates in F. kawagutii and S. pilosum heat-evolved lineages, respectively, suggest alterations in nutrition resource usage and allocation processes may have occurred. Increased phosphate uptake rates of the heat-evolved D. trenchii strain indicate that experimental evolution resulted in further trade-offs in this species. These findings deepen our understanding of the physiological responses of Symbiodiniaceae cultures to thermal selection and their capacity to adapt to elevated temperatures. The new heat-evolved Symbiodiniaceae developed here may be beneficial for coral reef restoration efforts if their enhanced thermal tolerance can be conferred in hospite.

4.
ISME J ; 16(6): 1676-1679, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35132118

RESUMEN

Early life stages of most coral species acquire microalgal endosymbionts (Symbiodiniaceae) from the environment, but whether exogenous symbiont uptake is possible in the adult life stage is unclear. Deep sequencing of the Symbiodiniaceae ITS2 genetic marker has revealed novel symbionts in adult corals following bleaching; however these strains may have already been present at densities below detection limits. To test whether acquisition of symbionts from the environment occurs, we subjected adult fragments of corals (six species in four families) to a chemical bleaching treatment (menthol and DCMU). The treatment reduced the native microalgal symbiont abundance to below 2% of their starting densities. The bleached corals were then inoculated with a cultured Cladocopium C1acro strain. Genotyping of the Symbiodiniaceae communities before bleaching and after reinoculation showed that fragments of all six coral species acquired the Cladocopium C1acro strain used for inoculation. Our results provide strong evidence for the uptake of Symbiodiniaceae from the environment by adult corals. We also demonstrate the feasibility of chemical bleaching followed by reinoculation to manipulate the Symbiodiniaceae communities of adult corals, providing an innovative approach to establish new symbioses between adult corals and heat-evolved microalgal symbionts, which could prove highly relevant to coral reef restoration efforts.


Asunto(s)
Antozoos , Dinoflagelados , Microalgas , Animales , Antozoos/genética , Arrecifes de Coral , Dinoflagelados/genética , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA