Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Neurosci ; 15(1): 20220330, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38283997

RESUMEN

Objective: Heterozygous mutations within the voltage-gated sodium channel α subunit (SCN1A) are responsible for the majority of cases of Dravet syndrome (DS), a severe developmental and epileptic encephalopathy. Development of novel therapeutic approaches is mandatory in order to directly target the molecular consequences of the genetic defect. The aim of the present study was to investigate whether cis-acting long non-coding RNAs (lncRNAs) of SCN1A are expressed in brain specimens of children and adolescent with epilepsy as these molecules comprise possible targets for precision-based therapy approaches. Methods: We investigated SCN1A mRNA expression and expression of two SCN1A related antisense RNAs in brain tissues in different age groups of pediatric non-Dravet patients who underwent surgery for drug resistant epilepsy. The effect of different antisense oligonucleotides (ASOs) directed against SCN1A specific antisense RNAs on SCN1A expression was tested. Results: The SCN1A related antisense RNAs SCN1A-dsAS (downstream antisense, RefSeq identifier: NR_110598) and SCN1A-usAS (upstream AS, SCN1A-AS, RefSeq identifier: NR_110260) were widely expressed in the brain of pediatric patients. Expression patterns revealed a negative correlation of SCN1A-dsAS and a positive correlation of lncRNA SCN1A-usAS with SCN1A mRNA expression. Transfection of SK-N-AS cells with an ASO targeted against SCN1A-dsAS was associated with a significant enhancement of SCN1A mRNA expression and reduction in SCN1A-dsAS transcripts. Conclusion: These findings support the role of SCN1A-dsAS in the suppression of SCN1A mRNA generation. Considering the haploinsufficiency in genetic SCN1A related DS, SCN1A-dsAS is an interesting target candidate for the development of ASOs (AntagoNATs) based precision medicine therapeutic approaches aiming to enhance SCN1A expression in DS.

2.
Life Sci Alliance ; 5(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688487

RESUMEN

The evolution of brain complexity correlates with an increased expression of long, noncoding (lnc) RNAs in neural tissues. Although prominent examples illustrate the potential of lncRNAs to scaffold and target epigenetic regulators to chromatin loci, only few cases have been described to function during brain development. We present a first functional characterization of the lncRNA LINC01322, which we term RUS for "RNA upstream of Slitrk3." The RUS gene is well conserved in mammals by sequence and synteny next to the neurodevelopmental gene Slitrk3. RUS is exclusively expressed in neural cells and its expression increases during neuronal differentiation of mouse embryonic cortical neural stem cells. Depletion of RUS locks neuronal precursors in an intermediate state towards neuronal differentiation resulting in arrested cell cycle and increased apoptosis. RUS associates with chromatin in the vicinity of genes involved in neurogenesis, most of which change their expression upon RUS depletion. The identification of a range of epigenetic regulators as specific RUS interactors suggests that the lncRNA may mediate gene activation and repression in a highly context-dependent manner.


Asunto(s)
ARN Largo no Codificante , Animales , Cromatina/genética , Cromatina/metabolismo , Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Neurogénesis/genética , Neuronas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
EMBO J ; 32(13): 1805-16, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23756463

RESUMEN

Cardiogenesis in mammals requires exquisite control of gene expression and faulty regulation of transcriptional programs underpins congenital heart disease (CHD), the most common defect among live births. Similarly, many adult cardiac diseases involve transcriptional changes and sometimes have a developmental basis. Long non-coding RNAs (lncRNAs) are a novel class of transcripts that regulate cellular processes by controlling gene expression; however, detailed insights into their biological and mechanistic functions are only beginning to emerge. Here, we discuss recent findings suggesting that lncRNAs are important factors in regulation of mammalian cardiogenesis and in the pathogenesis of CHD as well as adult cardiac disease. We also outline potential methodological and conceptual considerations for future studies of lncRNAs in the heart and other contexts.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cardiopatías/genética , Transcripción Genética , Adulto , Cardiopatías/patología , Humanos , ARN Largo no Codificante
4.
Cell ; 152(3): 570-83, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23352431

RESUMEN

Long noncoding RNAs (lncRNAs) are often expressed in a development-specific manner, yet little is known about their roles in lineage commitment. Here, we identified Braveheart (Bvht), a heart-associated lncRNA in mouse. Using multiple embryonic stem cell (ESC) differentiation strategies, we show that Bvht is required for progression of nascent mesoderm toward a cardiac fate. We find that Bvht is necessary for activation of a core cardiovascular gene network and functions upstream of mesoderm posterior 1 (MesP1), a master regulator of a common multipotent cardiovascular progenitor. We also show that Bvht interacts with SUZ12, a component of polycomb-repressive complex 2 (PRC2), during cardiomyocyte differentiation, suggesting that Bvht mediates epigenetic regulation of cardiac commitment. Finally, we demonstrate a role for Bvht in maintaining cardiac fate in neonatal cardiomyocytes. Together, our work provides evidence for a long noncoding RNA with critical roles in the establishment of the cardiovascular lineage during mammalian development.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/metabolismo , Miocitos Cardíacos/citología , ARN Largo no Codificante , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Redes Reguladoras de Genes , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Ratas
5.
Fly (Austin) ; 6(3): 162-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22836728

RESUMEN

Polycomb group (PcG) proteins were originally identified as negative regulators of HOX genes in Drosophila but have since emerged as a widely used transcriptional repression system that controls a variety of developmental processes in animals and plants. PcG proteins exist in multi-protein complexes that comprise specific chromatin-modifying enzymatic activities. Genome-wide binding studies in Drosophila and in mammalian cells revealed that these complexes co-localize at a large set of genes encoding developmental regulators. Recent analyses in Drosophila have begun to explore how the different chromatin-modifying activities of PcG protein complexes contribute to the repression of individual target genes. These studies suggest that monoubiquitination of histone H2A (H2Aub) by the PcG protein Sce is only essential for repression of a subset of PcG target genes but is not required for the Polycomb-mediated repression of other targets. Calypso/dBap1, a major deubiquitinase for H2Aub is also critically needed for repression of a subset of PcG target genes. Here, we review our current understanding of the role of H2A monoubiquitination and deubiquitination in Polycomb repression in Drosophila. We discuss unresolved issues concerning the immunological detection of H2Aub and critically evaluate experiments that used Sce and Ring1B point mutants with impaired H2A ubiquitinase activity to study H2Aub-dependent and -independent functions of these proteins in transcriptional repression.


Asunto(s)
Drosophila/genética , Histonas/metabolismo , Proteínas del Grupo Polycomb/genética , Animales , Drosophila/crecimiento & desarrollo , Embrión no Mamífero/metabolismo , Represión Epigenética , Histonas/genética , Larva/genética , Larva/metabolismo , Modelos Genéticos , Ubiquitinación
6.
Development ; 139(1): 117-27, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22096074

RESUMEN

Polycomb group (PcG) proteins exist in multiprotein complexes that modify chromatin to repress transcription. Drosophila PcG proteins Sex combs extra (Sce; dRing) and Posterior sex combs (Psc) are core subunits of PRC1-type complexes. The Sce:Psc module acts as an E3 ligase for monoubiquitylation of histone H2A, an activity thought to be crucial for repression by PRC1-type complexes. Here, we created an Sce knockout allele and show that depletion of Sce results in loss of H2A monoubiquitylation in developing Drosophila. Genome-wide profiling identified a set of target genes co-bound by Sce and all other PRC1 subunits. Analyses in mutants lacking individual PRC1 subunits reveals that these target genes comprise two distinct classes. Class I genes are misexpressed in mutants lacking any of the PRC1 subunits. Class II genes are only misexpressed in animals lacking the Psc-Su(z)2 and Polyhomeotic (Ph) subunits but remain stably repressed in the absence of the Sce and Polycomb (Pc) subunits. Repression of class II target genes therefore does not require Sce and H2A monoubiquitylation but might rely on the ability of Psc-Su(z)2 and Ph to inhibit nucleosome remodeling or to compact chromatin. Similarly, Sce does not provide tumor suppressor activity in larval tissues under conditions in which Psc-Su(z)2, Ph and Pc show such activity. Sce and H2A monoubiquitylation are therefore only crucial for repression of a subset of genes and processes regulated by PRC1-type complexes. Sce synergizes with the Polycomb repressive deubiquitinase (PR-DUB) complex to repress transcription at class I genes, suggesting that H2A monoubiquitylation must be appropriately balanced for their transcriptional repression.


Asunto(s)
Proteína con Homeodominio Antennapedia/metabolismo , Cromatina/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteína con Homeodominio Antennapedia/genética , Cromatina/metabolismo , Cartilla de ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Nucleosomas/fisiología , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Interferencia de ARN , Ubiquitinación
7.
Nature ; 465(7295): 243-7, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20436459

RESUMEN

Polycomb group (PcG) proteins are transcriptional repressors that control processes ranging from the maintenance of cell fate decisions and stem cell pluripotency in animals to the control of flowering time in plants. In Drosophila, genetic studies identified more than 15 different PcG proteins that are required to repress homeotic (HOX) and other developmental regulator genes in cells where they must stay inactive. Biochemical analyses established that these PcG proteins exist in distinct multiprotein complexes that bind to and modify chromatin of target genes. Among those, Polycomb repressive complex 1 (PRC1) and the related dRing-associated factors (dRAF) complex contain an E3 ligase activity for monoubiquitination of histone H2A (refs 1-4). Here we show that the uncharacterized Drosophila PcG gene calypso encodes the ubiquitin carboxy-terminal hydrolase BAP1. Biochemically purified Calypso exists in a complex with the PcG protein ASX, and this complex, named Polycomb repressive deubiquitinase (PR-DUB), is bound at PcG target genes in Drosophila. Reconstituted recombinant Drosophila and human PR-DUB complexes remove monoubiquitin from H2A but not from H2B in nucleosomes. Drosophila mutants lacking PR-DUB show a strong increase in the levels of monoubiquitinated H2A. A mutation that disrupts the catalytic activity of Calypso, or absence of the ASX subunit abolishes H2A deubiquitination in vitro and HOX gene repression in vivo. Polycomb gene silencing may thus entail a dynamic balance between H2A ubiquitination by PRC1 and dRAF, and H2A deubiquitination by PR-DUB.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación/fisiología , Alelos , Animales , Biocatálisis , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Silenciador del Gen , Genes Homeobox/genética , Genes de Insecto/genética , Prueba de Complementación Genética , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/aislamiento & purificación , Nucleosomas/química , Nucleosomas/metabolismo , Complejo Represivo Polycomb 1 , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/genética
8.
Traffic ; 11(2): 250-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19958468

RESUMEN

gamma-Secretase is critically involved in the Notch pathway and in Alzheimer's disease. The four subunits of gamma-secretase assemble in the endoplasmic reticulum (ER) and unassembled subunits are retained/retrieved to the ER by specific signals. We here describe a novel ER-retention/retrieval signal in the transmembrane domain (TMD) 4 of presenilin 1, a subunit of gamma-secretase. TMD4 also is essential for complex formation, conferring a dual role for this domain. Likewise, TMD1 of Pen2 is bifunctional as well. It carries an ER-retention/retrieval signal and is important for complex assembly by binding to TMD4. The two TMDs directly interact with each other and mask their respective ER-retention/retrieval signals, allowing surface transport of reporter proteins. Our data suggest a model how assembly of Pen2 into the nascent gamma-secretase complex could mask TMD-based ER-retention/retrieval signals to allow plasma membrane transport of fully assembled gamma-secretase.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Retículo Endoplásmico/metabolismo , Señales de Clasificación de Proteína , Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Línea Celular , Humanos , Immunoblotting , Ratones , Microscopía Fluorescente , Presenilinas/química , Presenilinas/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas
9.
EMBO Rep ; 8(8): 743-8, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17668005

RESUMEN

gamma-Secretase is involved in the production of amyloid beta-peptide, which is the principal component of amyloid plaques in the brains of patients with Alzheimer disease. gamma-Secretase is a complex composed of presenilin (PS), nicastrin, anterior pharynx-defective phenotype 1 (Aph1) and PS enhancer 2 (Pen2). We previously proposed a mechanism of complex assembly by which unassembled subunits are retained in the endoplasmic reticulum (ER) and only the fully assembled complex is exported from the ER. We have now identified Retention in endoplasmic reticulum 1 (Rer1) as a protein that is involved in the retention/retrieval of unassembled Pen2 to the ER. Direct binding of unassembled Pen2 to Rer1 is mediated by the first transmembrane domain of Pen2, and a conserved asparagine in this domain is required. Downregulation of Rer1 leads to increased surface localization of Pen2, whereas overexpression of Rer1 stabilizes unassembled Pen2. To our knowledge, Rer1 is the first identified interaction partner of mammalian transmembrane-based retention/retrieval signals.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Secuencias de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/genética , Asparagina/química , Asparagina/genética , Línea Celular , Retículo Endoplásmico/química , Humanos , Inmunoprecipitación , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...