Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Am Heart Assoc ; 12(23): e032969, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38014661

RESUMEN

BACKGROUND: Marijuana leaf vaporizers, which heat plant material and sublimate Δ-9-tetrahydrocannabinol without combustion, are popular alternatives to smoking cannabis that are generally perceived to be less harmful. We have shown that smoke from tobacco and marijuana, as well as aerosol from e-cigarettes and heated tobacco products, impair vascular endothelial function in rats measured as arterial flow-mediated dilation (FMD). METHODS AND RESULTS: We exposed 8 rats per group to aerosol generated by 2 vaporizer systems (Volcano and handheld Yocan) using marijuana with varying Δ-9-tetrahydrocannabinol levels, in a single pulsatile exposure session of 2 s/min over 5 minutes, and measured changes in FMD. To model secondhand exposure, we exposed rats for 1 minute to diluted aerosol approximating release of uninhaled Volcano aerosol into typical residential rooms. Exposure to aerosol from marijuana with and without cannabinoids impaired FMD by ≈50%. FMD was similarly impaired by aerosols from Yocan (237 °C), and from Volcano at both its standard temperature (185 °C) and the minimum sublimation temperature of Δ-9-tetrahydrocannabinol (157 °C), although the low-temperature aerosol condition did not effectively deliver Δ-9-tetrahydrocannabinol to the circulation. Modeled secondhand exposure based on diluted Volcano aerosol also impaired FMD. FMD was not affected in rats exposed to clean air or water vapor passed through the Volcano system. CONCLUSIONS: Acute direct exposure and modeled secondhand exposure to marijuana leaf vaporizer aerosol, regardless of cannabinoid concentration or aerosol generation temperature, impair endothelial function in rats comparably to marijuana smoke. Our findings indicate that use of leaf vaporizers is unlikely to reduce the vascular risk burden of smoking marijuana.


Asunto(s)
Cannabinoides , Cannabis , Sistemas Electrónicos de Liberación de Nicotina , Fumar Marihuana , Animales , Ratas , Aerosoles , Dilatación Patológica , Dronabinol , Fumar Marihuana/efectos adversos , Nebulizadores y Vaporizadores , Hojas de la Planta , Humo
2.
Chem Res Toxicol ; 36(11): 1703-1710, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37827523

RESUMEN

Cigarette butts are one of the most prevalent forms of litter worldwide and may leach toxic compounds when deposited in aquatic environments. Previous studies demonstrated that smoked cigarette leachate is toxic toward aquatic organisms. However, the specific bioavailable chemicals from the leachate and the potential for human and wildlife exposure through the food chain were unknown. Using a nontargeted analytical approach based on GC×GC/TOF-MS, 43 compounds were confirmed to leach from smoked cigarettes when exposed to a water source. Additionally, the bioaccumulation potential of organic contaminants in an edible fish, rainbow trout (Oncorhynchus mykiss), was assessed through direct exposure to the leachate of smoked cigarettes at 0.5 CB/L for 28 days. There was a significant reduction in fish mass among the exposed rainbow trout vs the control group (χ2 (1) = 5.3, p = 0.021). Both nontargeted and targeted chemical analysis of representative fish tissue identified four tobacco alkaloids, nicotine, nicotyrine, myosmine, and 2,2'-bipyridine. Their average tissue concentrations were 466, 55.4, 94.1, and 70.8 ng/g, respectively. This study identifies leached compounds from smoked cigarettes and demonstrates the uptake of specific chemicals in rainbow trout, thus suggesting a potential for accumulation in food webs, resulting in human and wildlife exposure.


Asunto(s)
Oncorhynchus mykiss , Animales , Humanos , Bioacumulación , Nicotina , Cromatografía de Gases , Cadena Alimentaria , Nicotiana
4.
Tob Control ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37263783

RESUMEN

Starting in the 1970s, individuals, businesses and the public have increasingly benefited from policies prohibiting smoking indoors, saving thousands of lives and billions of dollars in healthcare expenditures. Smokefree policies to protect against secondhand smoke exposure, however, do not fully protect the public from the persistent and toxic chemical residues from tobacco smoke (also known as thirdhand smoke) that linger in indoor environments for years after smoking stops. Nor do these policies address the economic costs that individuals, businesses and the public bear in their attempts to remediate this toxic residue. We discuss policy-relevant differences between secondhand smoke and thirdhand smoke exposure: persistent pollutant reservoirs, pollutant transport, routes of exposure, the time gap between initial cause and effect, and remediation and disposal. We examine four policy considerations to better protect the public from involuntary exposure to tobacco smoke pollutants from all sources. We call for (a) redefining smokefree as free of tobacco smoke pollutants from secondhand and thirdhand smoke; (b) eliminating exemptions to comprehensive smoking bans; (c) identifying indoor environments with significant thirdhand smoke reservoirs; and (d) remediating thirdhand smoke. We use the case of California as an example of how secondhand smoke-protective laws may be strengthened to encompass thirdhand smoke protections. The health risks and economic costs of thirdhand smoke require that smokefree policies, environmental protections, real estate and rental disclosure policies, tenant protections, and consumer protection laws be strengthened to ensure that the public is fully protected from and informed about the risks of thirdhand smoke exposure.

5.
Nicotine Tob Res ; 25(8): 1424-1430, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-36617255

RESUMEN

INTRODUCTION: The aims of this study were to characterize particle size in a thirdhand smoke (THS) aerosol and measure the effects of controlled inhalational exposure to THS on biomarkers of tobacco smoke exposure, inflammation, and oxidative stress in human subjects. Secondhand cigarette smoke changes physically and chemically after release into the environment. Some of the resulting chemicals persist indoors as thirdhand cigarette smoke. THS that is sorbed to surfaces can emit particles back into the air. AIMS AND METHODS: Smoke particle size was measured with a scanning mobility particle sizer and condensation particle counter. Using a crossover study design, 18 healthy nonsmokers received a 3-hour inhalational exposure to THS and to filtered, conditioned air. THS was generated with a smoking machine and aged overnight in a chamber. The chamber was flushed with clean air to create the THS aerosol. The tobacco smoke metabolites cotinine, 3-hydroxycotinine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were measured in urine. Vascular endothelial growth factor and interleukin-6 in plasma, and 8-isoprostane in urine, were measured using enzyme-linked immunosorbent assay kits. RESULTS: Mean smoke particle size increased with aging (171 to 265 nm). We found significant increases in urinary cotinine and 3-hydroxycotinine after 3 hours of exposure to THS and no significant increases in NNAL, interleukin-6, vascular endothelial growth factor or 8-isoprostane. CONCLUSIONS: Acute inhalational exposure to 22-hour old tobacco smoke aerosol caused increases in the metabolites of nicotine but not the metabolites of the tobacco-specific nitrosamine NNK (4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone). This corroborates the utility of cotinine and NNAL for secondhand and THS exposure screening. IMPLICATIONS: This study shows that a 3-hour inhalational exposure to the tobacco smoke aerosol that forms in a room that has been smoked in and left unventilated overnight causes increases in urinary metabolites of nicotine, but not of the tobacco-specific nitrosamine NNK. This suggests that cleaning personnel and others who live and work in rooms polluted with aged or thirdhand cigarette smoke regularly may have inhalational exposures and potential health effects related to their exposure to nicotine and other smoke toxicants.


Asunto(s)
Fumar Cigarrillos , Nitrosaminas , Contaminación por Humo de Tabaco , Humanos , Anciano , Nicotina/efectos adversos , Nicotina/análisis , Cotinina/orina , Nicotiana , Carcinógenos/análisis , Contaminación por Humo de Tabaco/efectos adversos , Contaminación por Humo de Tabaco/análisis , Estudios Cruzados , Interleucina-6 , Factor A de Crecimiento Endotelial Vascular , Nitrosaminas/orina , Biomarcadores/orina , Aerosoles
6.
Arterioscler Thromb Vasc Biol ; 42(11): 1333-1350, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36288290

RESUMEN

BACKGROUND: The harmful vascular effects of smoking are well established, but the effects of chronic use of electronic cigarettes (e-cigarettes) on endothelial function are less understood. We hypothesized that e-cigarette use causes changes in blood milieu that impair endothelial function. METHODS: Endothelial function was measured in chronic e-cigarette users, chronic cigarette smokers, and nonusers. We measured effects of participants' sera, or e-cigarette aerosol condensate, on NO and H2O2 release and cell permeability in cultured endothelial cells (ECs). RESULTS: E-cigarette users and smokers had lower flow-mediated dilation (FMD) than nonusers. Sera from e-cigarette users and smokers reduced VEGF (vascular endothelial growth factor)-induced NO secretion by ECs relative to nonuser sera, without significant reduction in endothelial NO synthase mRNA or protein levels. E-cigarette user sera caused increased endothelial release of H2O2, and more permeability than nonuser sera. E-cigarette users and smokers exhibited changes in circulating biomarkers of inflammation, thrombosis, and cell adhesion relative to nonusers, but with distinct profiles. E-cigarette user sera had higher concentrations of the receptor for advanced glycation end products (RAGE) ligands S100A8 and HMGB1 (high mobility group box 1) than smoker and nonuser sera, and receptor for advanced glycation end product inhibition reduced permeability induced by e-cigarette user sera but did not affect NO production. CONCLUSIONS: Chronic vaping and smoking both impair FMD and cause changes in the blood that inhibit endothelial NO release. Vaping, but not smoking, causes changes in the blood that increase microvascular endothelial permeability and may have a vaping-specific effect on intracellular oxidative state. Our results suggest a role for RAGE in e-cigarette-induced changes in endothelial function.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Proteína HMGB1 , Vapeo , Humanos , Vapeo/efectos adversos , Factor A de Crecimiento Endotelial Vascular , Receptor para Productos Finales de Glicación Avanzada , Fumar/efectos adversos , Células Endoteliales , Peróxido de Hidrógeno , Aerosoles , Biomarcadores , ARN Mensajero , Óxido Nítrico Sintasa
7.
Arterioscler Thromb Vasc Biol ; 42(11): 1324-1332, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36288292

RESUMEN

BACKGROUND: Exposure to tobacco or marijuana smoke, or e-cigarette aerosols, causes vascular endothelial dysfunction in humans and rats. We aimed to determine what constituent, or class of constituents, of smoke is responsible for endothelial functional impairment. METHODS: We investigated several smoke constituents that we hypothesized to mediate this effect by exposing rats and measuring arterial flow-mediated dilation (FMD) pre- and post-exposure. We measured FMD before and after inhalation of sidestream smoke from research cigarettes containing normal and reduced nicotine level with and without menthol, as well as 2 of the main aldehyde gases found in both smoke and e-cigarette aerosol (acrolein and acetaldehyde), and inert carbon nanoparticles. RESULTS: FMD was reduced by all 4 kinds of research cigarettes, with extent of reduction ranging from 20% to 46% depending on the cigarette type. While nicotine was not required for the impairment, higher nicotine levels in smoke were associated with a greater percent reduction of FMD (41.1±4.5% reduction versus 19.2±9.5%; P=0.047). Lower menthol levels were also associated with a greater percent reduction of FMD (18.5±9.8% versus 40.5±4.8%; P=0.048). Inhalation of acrolein or acetaldehyde gases at smoke-relevant concentrations impaired FMD by roughly 50% (P=0.001). However, inhalation of inert carbon nanoparticles at smoke-relevant concentrations with no gas phase also impaired FMD by a comparable amount (P<0.001). Bilateral cervical vagotomy blocked the impairment of FMD by tobacco smoke. CONCLUSIONS: There is no single constituent or class of constituents responsible for acute impairment of endothelial function by smoke; rather, we propose that acute endothelial dysfunction by disparate inhaled products is caused by vagus nerve signaling initiated by airway irritation.


Asunto(s)
Fumar Cigarrillos , Sistemas Electrónicos de Liberación de Nicotina , Contaminación por Humo de Tabaco , Humanos , Ratas , Animales , Nicotiana , Mentol , Acroleína/toxicidad , Nicotina/toxicidad , Aerosoles , Aldehídos , Nervio Vago , Acetaldehído/toxicidad , Gases , Carbono
8.
EBioMedicine ; 84: 104256, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36137411

RESUMEN

BACKGROUND: Thirdhand smoke (THS) exposure correlated with significant metabolism of carcinogenic chemicals and the potential to cause detrimental health effects. Human harm research of THS exposure is limited to one other study and overall, there is a general lack of knowledge of the human health responses to THS exposure. METHODS: This was a clinical investigation to evaluate the health effects of 3-h dermal THS exposure from urine and plasma. 10 healthy, non-smoking subjects were recruited for dermal exposure for 3 h exposed to clothing impregnated with filtered clean air or THS. Exposures to clean air or THS occurred 20-30 days apart. FINDINGS: In THS-exposed group, there was a significant elevation of urinary 8-OHdG, 8-isoprostane, protein carbonyls. The THS 3-h exposure identified proteomics pathways of inflammatory response (p=2.18 × 10-8), adhesion of blood cells (p=2.23 × 10-8), atherosclerosis (p=2.78 × 10-9), and lichen planus (p=1.77 × 10-8). Nine canonical pathways were significantly activated including leukocyte extravasation signaling (z-score=3.0), and production of nitric oxide and reactive oxygen in macrophages (z-score=2.1). The THS 22-h proteomics pathways revealed inflammation of organ (p=3.09 × 10-8), keratinization of the epidermis (p=4.0 × 10-7), plaque psoriasis (p=5.31 × 10-7), and dermatitis (p=6.0 × 10-7). Two activated canonical pathways were production of nitric oxide and reactive oxygen in macrophages (z-score=2.646), and IL-8 signaling (z-score=2.0). INTERPRETATION: This is a clinical study demonstrating that acute dermal exposure to THS mimics the harmful effects of cigarette smoking, alters the human plasma proteome, initiates mechanisms of skin inflammatory disease, and elevates urinary biomarkers of oxidative harm. FUNDING: Funding was provided by the Tobacco Related Disease Research Program (TRDRP) 24RT-0037 TRDRP, 24RT-0039 TRDRP, and 28PT-0081 TRDRP.


Asunto(s)
Contaminación por Humo de Tabaco , Biomarcadores , Humanos , Interleucina-8 , Óxido Nítrico/farmacología , Estrés Oxidativo , Oxígeno , Proteoma , Nicotiana , Contaminación por Humo de Tabaco/efectos adversos
9.
Environ Sci Technol ; 56(17): 12506-12516, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35900278

RESUMEN

Tobacco-specific nitrosamines (TSNAs) are emitted during smoking and form indoors by nitrosation of nicotine. Two of them, N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are human carcinogens with No Significant Risk Levels (NSRLs) of 500 and 14 ng day-1, respectively. Another TSNA, 4-(methylnitrosamino)-4-(3-pyridyl) butanal (NNA), shows genotoxic and mutagenic activity in vitro. Here, we present additional evidence of genotoxicity of NNA, an assessment of TSNA dermal uptake, and predicted exposure risks through different pathways. Dermal uptake was investigated by evaluating the penetration of NNK and nicotine through mice skin. Comparable mouse urine metabolite profiles suggested that both compounds were absorbed and metabolized via similar mechanisms. We then investigated the effects of skin constituents on the reaction of adsorbed nicotine with nitrous acid (epidermal chemistry). Higher TSNA concentrations were formed on cellulose and cotton substrates that were precoated with human skin oils and sweat compared to clean substrates. These results were combined with reported air, dust, and surface concentrations to assess NNK intake. Five different exposure pathways exceeded the NSRL under realistic scenarios, including inhalation, dust ingestion, direct dermal contact, gas-to-skin deposition, and epidermal nitrosation of nicotine. These results illustrate potential long-term health risks for nonsmokers in homes contaminated with thirdhand tobacco smoke.


Asunto(s)
Nicotiana , Nitrosaminas , Animales , Carcinógenos/toxicidad , Polvo , Ingestión de Alimentos , Humanos , Ratones , Nicotina/química , Nitrosaminas/química , Nicotiana/química , Nicotiana/metabolismo
10.
Microbiologyopen ; 10(3): e1198, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34180593

RESUMEN

The gut microbiome composition is influenced by many factors including environmental exposures. Here, we investigated the effect of thirdhand cigarette smoke (THS) and exposure age on gut microbiome diversity. C57BL/6 mice were exposed to THS at human exposure relevant levels for three weeks during three different life stages: postnatal (0-3 weeks of age), pubescent (4-7 weeks of age), and adult (9-12 weeks of age), respectively. Cecal microbiome profiles were assessed at 17 weeks of age by 16S rRNA gene sequencing. We found that age at THS exposure strongly influenced the cecal microbiome composition. Although postnatal THS exposure significantly influenced the microbial composition, pubescent and adulthood exposures only had minor effects. The microbiome of postnatally THS-exposed mice significantly increased several degradation pathways that regulate glycolysis and pyruvate decarboxylation, and significantly decreased coenzyme A biosynthesis and pyrimidine deoxyribonucleoside salvage. Our results indicate that mouse postnatal development is particularly susceptible to persistent THS exposure effects on the gut microbiome.


Asunto(s)
Ciego/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Nicotiana/química , Humo/efectos adversos , Contaminación por Humo de Tabaco/efectos adversos , Factores de Edad , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Artículo en Inglés | MEDLINE | ID: mdl-33808392

RESUMEN

Thirdhand smoke (THS) is an environmental contaminant that may cause adverse health effects in smokers and nonsmokers. Currently, time-consuming analytical methods are necessary to assess chemicals in THS repositories, like upholstered furniture and clothing. Our goal was to develop a rapid, accessible method that can be used to measure THS contamination in common household fabrics and to evaluate remediation. Cotton, terry cloth, polyester, and wool were exposed to THS for various times in a controlled laboratory environment and then extracted in various media at room temperature or 60 °C to develop an autofluorescent method to quantify THS. Concentrations of nicotine and related alkaloids in the extracts were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance liquid chromatography (HPLC). The autofluorescence of extracts was proportional to the time and amount of THS exposure received by cotton and terry cloth. Extracts of polyester and wool did not show autofluorescence unless heat was applied during extraction. Nicotine, nicotine alkaloids, and TSNA concentrations were higher in THS extracts from cotton and terry cloth than extracts of polyester and wool carpet, in agreement with the autofluorescence data. For fabrics spiked with 10 mg of nicotine, extraction efficiency was much higher from terry cloth (7 mg) than polyester (0.11 mg). In high relative humidity, nicotine recovery from both cotton and polyester was 80% (~8 mg). Our results provide a simple, rapid method to assess THS contaminants in household fabrics and further show that THS extraction is influenced by fabric type, heat, and humidity. Thus, remediation of THS environments may need to vary depending on the fabric reservoirs being treated. Understanding the dynamics of THS in fabrics can help set up appropriate remediation policies to protect humans from exposure.


Asunto(s)
Humo , Contaminación por Humo de Tabaco , Animales , Cromatografía Liquida , Humanos , Espectrometría de Masas en Tándem , Nicotiana , Contaminación por Humo de Tabaco/análisis
13.
Clin Sci (Lond) ; 135(8): 1053-1063, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33851706

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Thirdhand smoke (THS) is the residual tobacco contamination that remains after the smoke clears. We investigated the effects of THS exposure in utero and during early life in a transgenic Cdkn2a knockout mouse model that is vulnerable to the development of leukemia/lymphoma. Female mice, and their offspring, were exposed from the first day of pregnancy to weaning. Plasma cytokines, body weight and hematologic parameters were measured in the offspring. To investigate THS exposure effects on the development of leukemia/lymphoma, bone marrow (BM) was collected from control and THS-exposed mice and transplanted into BM-ablated recipient mice, which were followed for tumor development for 1 year. We found that in utero and early-life THS exposure caused significant changes in plasma cytokine concentrations and in immune cell populations; changes appeared more pronounced in male mice. Spleen (SP) and BM B-cell populations were significantly lower in THS-exposed mice. We furthermore observed that THS exposure increased the leukemia/lymphoma-free survival in BM transplantation recipient mice, potentially caused by THS-induced B-cell toxicity. A trend towards increased solid tumors in irradiated mice reconstituted with THS-exposed BM stimulates the hypothesis that the immunosuppressive effects of in utero and early-life THS exposure might contribute to carcinogenesis by lowering the host defense to other toxic exposures. Our study adds to expanding evidence that THS exposure alters the immune system and that in utero and early-life developmental periods represent vulnerable windows of susceptibility for these effects.


Asunto(s)
Sistema Inmunológico/efectos de los fármacos , Leucemia/etiología , Linfoma/etiología , Nicotiana/efectos adversos , Humo/efectos adversos , Animales , Leucemia/inmunología , Linfoma/inmunología , Ratones Transgénicos , Contaminación por Humo de Tabaco/efectos adversos , Contaminación por Humo de Tabaco/análisis
14.
Environ Mol Mutagen ; 61(6): 635-646, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32267018

RESUMEN

Thirdhand cigarette smoke (THS) is a newly described toxin that lingers in the indoor environment long after cigarettes have been extinguished. Emerging results from both cellular and animal model studies suggest that THS is a potential human health hazard. DNA damage derived from THS exposure could have genotoxic consequences that would lead to the development of diseases. However, THS exposure-induced interference with fundamental DNA transactions such as replication and transcription, and the role of DNA repair in ameliorating such effects, remain unexplored. Here, we found that THS exposure increased the percentage of cells in S-phase, suggesting impaired S-phase progression. Key DNA damage response proteins including RPA, ATR, ATM, CHK1, and BRCA1 were activated in lung cells exposed to THS, consistent with replication stress. In addition, THS exposure caused increased 53BP1 foci, indicating DNA double-strand break induction. Consistent with these results, we observed increased micronuclei formation, a marker of genomic instability, in THS-exposed cells. Exposure to THS also caused a significant increase in phosphorylated RNA Polymerase II engaged in transcription elongation, suggesting an increase in transcription-blocking lesions. In agreement with this conclusion, ongoing RNA synthesis was very significantly reduced by THS exposure. Loss of nucleotide excision repair exacerbated the reduction in RNA synthesis, suggesting that bulky DNA adducts formed by THS are blocks to transcription. The adverse impact on both replication and transcription supports genotoxic stress as a result of THS exposure, with important implications for both cancer and other diseases.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Daño del ADN/efectos de los fármacos , Contaminación por Humo de Tabaco/efectos adversos , Transcripción Genética/efectos de los fármacos , Contaminantes Atmosféricos/toxicidad , Línea Celular , Replicación del ADN/efectos de los fármacos , Humanos , Pruebas de Micronúcleos , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos
15.
Chem Res Toxicol ; 32(8): 1670-1679, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31286770

RESUMEN

Smoked cigarettes are the most prevalent form of litter worldwide, often finding their way into oceans and inland waterways. Cigarette smoke contains more than 4000 individual chemicals, some of them carcinogenic or otherwise toxic. We examined the cytotoxicity, genotoxicity, aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and p53 response pathways of smoked cigarette leachate in vitro. Both seawater and freshwater leachates of smoked cigarettes were tested. Cytotoxicity and genotoxicity were negligible at 100 smoked cigarettes/L, while statistically significant AhR, ER, and p53 responses were observed in the extracts of both leachates, suggesting a potential risk to human health through exposure to cigarette litter in the environment. To identify responsible chemicals for the AhR response, an effect directed analysis approach was coupled with nontargeted chemical analysis based on comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC/TOF-MS). Eleven compounds potentially responsible for the AhR response were identified. Among them, 2-methylindole was partially responsible for the AhR response.


Asunto(s)
Salmonella typhimurium/efectos de los fármacos , Humo/efectos adversos , Productos de Tabaco/toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Estructura Molecular , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Estrógenos/metabolismo , Salmonella typhimurium/genética , Humo/análisis , Extracción en Fase Sólida , Productos de Tabaco/análisis , Pruebas de Toxicidad , Proteína p53 Supresora de Tumor/metabolismo , Contaminantes Químicos del Agua/análisis
16.
J Am Coll Cardiol ; 73(21): 2722-2737, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31146818

RESUMEN

BACKGROUND: Electronic cigarettes (e-cigarettes) have experienced a tremendous increase in use. Unlike cigarette smoking, the effects of e-cigarettes and their constituents on mediating vascular health remain understudied. However, given their increasing popularity, it is imperative to evaluate the health risks of e-cigarettes, including the effects of their ingredients, especially nicotine and flavorings. OBJECTIVES: The purpose of this study was to investigate the effects of flavored e-cigarette liquids (e-liquids) and serum isolated from e-cigarette users on endothelial health and endothelial cell-dependent macrophage activation. METHODS: Human-induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) and a high-throughput screening approach were used to assess endothelial integrity following exposure to 6 different e-liquids with varying nicotine concentrations and to serum from e-cigarette users. RESULTS: The cytotoxicity of the e-liquids varied considerably, with the cinnamon-flavored product being most potent and leading to significantly decreased cell viability, increased reactive oxygen species (ROS) levels, caspase 3/7 activity, and low-density lipoprotein uptake, activation of oxidative stress-related pathway, and impaired tube formation and migration, confirming endothelial dysfunction. Upon exposure of ECs to e-liquid, conditioned media induced macrophage polarization into a pro-inflammatory state, eliciting the production of interleukin-1ß and -6, leading to increased ROS. After exposure of human iPSC-ECs to serum of e-cigarette users, increased ROS linked to endothelial dysfunction was observed, as indicated by impaired pro-angiogenic properties. There was also an observed increase in inflammatory cytokine expression in the serum of e-cigarette users. CONCLUSIONS: Acute exposure to flavored e-liquids or e-cigarette use exacerbates endothelial dysfunction, which often precedes cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Sistemas Electrónicos de Liberación de Nicotina , Células Endoteliales/efectos de los fármacos , Vapeo/efectos adversos , Vapeo/sangre , Adulto , Estudios de Casos y Controles , Citocinas/sangre , Células Endoteliales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Recuento de Leucocitos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Nicotina/sangre , Especies Reactivas de Oxígeno/metabolismo , Fumadores
17.
JAMA Netw Open ; 2(6): e196362, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31251375

RESUMEN

Importance: No previous studies have shown that acute inhalation of thirdhand smoke (THS) activates stress and survival pathways in the human nasal epithelium. Objective: To evaluate gene expression in the nasal epithelium of nonsmoking women following acute inhalation of clean air and THS. Design, Setting, and Participants: Nasal epithelium samples were obtained from participants in a randomized clinical trial (2011-2015) on the health effects of inhaled THS. In a crossover design, participants were exposed, head only, to THS and to conditioned, filtered air in a laboratory setting. The order of exposures was randomized and exposures were separated by at least 21 days. Ribonucleic acid was obtained from a subset of 4 healthy, nonsmoking women. Exposures: By chance, women in the subset were randomized to receive clean air exposure first and THS exposure second. Exposures lasted 3 hours. Main Outcomes and Measures: Differentially expressed genes were identified using RNA sequencing with a false-discovery rate less than 0.1. Results: Participants were 4 healthy, nonsmoking women aged 27 to 49 years (mean [SD] age, 42 [10.2] years) with no chronic diseases. A total of 389 differentially expressed genes were identified in nasal epithelium exposed to THS, while only 2 genes, which were not studied further, were affected by clean air. Enriched gene ontology terms associated with stress-induced mitochondrial hyperfusion were identified, such as respiratory electron transport chain (q = 2.84 × 10-3) and mitochondrial inner membrane (q = 7.21 × 10-6). Reactome pathway analysis identified terms associated with upregulation of DNA repair mechanisms, such as nucleotide excision repair (q = 1.05 × 10-2). Enrichment analyses using ingenuity pathway analysis identified canonical pathways related to stress-induced mitochondrial hyperfusion (eg, increased oxidative phosphorylation) (P = .001), oxidative stress (eg, glutathione depletion phase II reactions) (P = .04), and cell survival (z score = 5.026). Conclusions and Relevance: This study found that acute inhalation of THS caused cell stress that led to the activation of survival pathways. Some responses were consistent with stress-induced mitochondrial hyperfusion and similar to those demonstrated previously in vitro. These data may be valuable to physicians treating patients exposed to THS and may aid in formulating regulations for the remediation of THS-contaminated environments.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Mucosa Nasal/fisiología , Humo/efectos adversos , Transcriptoma/fisiología , Adulto , Muerte Celular/fisiología , Supervivencia Celular/fisiología , Estudios Cruzados , Reparación del ADN/fisiología , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Expresión Génica/fisiología , Voluntarios Sanos , Humanos , Persona de Mediana Edad , Estrés Fisiológico/fisiología , Contaminación por Humo de Tabaco/efectos adversos
18.
Am J Physiol Heart Circ Physiol ; 316(4): H801-H827, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30707616

RESUMEN

Although substantial evidence shows that smoking is positively and robustly associated with cardiovascular disease (CVD), the CVD risk associated with the use of new and emerging tobacco products, such as electronic cigarettes, hookah, and heat-not-burn products, remains unclear. This uncertainty stems from lack of knowledge on how the use of these products affects cardiovascular health. Cardiovascular injury associated with the use of new tobacco products could be evaluated by measuring changes in biomarkers of cardiovascular harm that are sensitive to the use of combustible cigarettes. Such cardiovascular injury could be indexed at several levels. Preclinical changes contributing to the pathogenesis of disease could be monitored by measuring changes in systemic inflammation and oxidative stress, organ-specific dysfunctions could be gauged by measuring endothelial function (flow-mediated dilation), platelet aggregation, and arterial stiffness, and organ-specific injury could be evaluated by measuring endothelial microparticles and platelet-leukocyte aggregates. Classical risk factors, such as blood pressure, circulating lipoproteins, and insulin resistance, provide robust estimates of risk, and subclinical disease progression could be followed by measuring coronary artery Ca2+ and carotid intima-media thickness. Given that several of these biomarkers are well-established predictors of major cardiovascular events, the association of these biomarkers with the use of new and emerging tobacco products could be indicative of both individual and population-level CVD risk associated with the use of these products. Differential effects of tobacco products (conventional vs. new and emerging products) on different indexes of cardiovascular injury could also provide insights into mechanisms by which they induce cardiovascular harm.


Asunto(s)
Enfermedades Cardiovasculares/inducido químicamente , Productos de Tabaco/efectos adversos , Biomarcadores , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/fisiopatología , Sistemas Electrónicos de Liberación de Nicotina , Humanos , Factores de Riesgo , Fumar
19.
Nicotine Tob Res ; 21(12): 1680-1688, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30053240

RESUMEN

INTRODUCTION: Thirdhand cigarette smoke is the fraction of cigarette smoke that remains in the environment long after a cigarette is extinguished. METHODS: The Truth Tobacco Industry Documents collection at the University of California San Francisco was searched for information on thirdhand smoke. RESULTS: In 1991, scientists at Philip Morris Inc conducted some of the first studies on thirdhand cigarette smoke. For 110 days, 8 hours a day, they ran sidestream cigarette smoke through a 30 m3 room that contained carpet, curtain, and textured wallpaper. The room was ventilated with clean air every night. By comparing the chemicals in the air during the 8-hour smoking period and during the clean air ventilation period, they showed that some smoke chemicals persist in the air 12 hours after smoking. By extracting the nicotine and nitrosamines from samples of the carpet, curtain, and wallpaper, they found that high concentrations of nicotine and the carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) persisted in the room for more than 50 days; that surface chemistry affected nitrosamine concentrations; and that the concentration of NNK in the room, 110 days after the last cigarette was extinguished, could exceed the mass of NNK that entered the room as smoke. CONCLUSIONS: These data, from a controlled environment where the total number of cigarettes smoked is known, provide further evidence that cigarette smoke chemicals remain in the environment for months after smoking, that they reemit back into the air, and that they react to form new toxins and carcinogens. Smoke-free policies are the best method to reduce exposure to thirdhand smoke. IMPLICATIONS: This unpublished, original research from Philip Morris Inc demonstrates that majority of the nicotine and tobacco-specific nitrosamines in the secondhand smoke from each cigarette smoked indoors remains on indoor surfaces for months after the cigarette is extinguished. It also demonstrates that elevated concentrations of nicotine, ammonia, formaldehyde, and the gas-phase nitrosamine, N-nitrosopyrrolidine, can be found in the air for more than 12 hours after smoking; that surface chemistry affects nitrosamine formation and persistence; and that the amount of the carcinogenic nitrosamine NNK that persists months after smoking ends can exceed the amount that actually came out of the cigarettes.


Asunto(s)
Carcinógenos/análisis , Exposición a Riesgos Ambientales/análisis , Contaminación por Humo de Tabaco/análisis , Humanos , Nicotina/análisis , Nitrosaminas/análisis , Factores de Tiempo , Industria del Tabaco
20.
Am J Physiol Lung Cell Mol Physiol ; 315(1): L25-L40, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29543040

RESUMEN

Evidence is accumulating that exposure to cigarette smoke (CS) increases the risk of developing acute respiratory distress syndrome (ARDS). Streptococcus pneumoniae is the most common cause of bacterial pneumonia, which in turn is the leading cause of ARDS. Chronic smokers have increased rates of pneumococcal colonization and develop more severe pneumococcal pneumonia than nonsmokers; yet mechanistic connections between CS exposure, bacterial pneumonia, and ARDS pathogenesis remain relatively unexplored. We exposed mice to 3 wk of moderate whole body CS or air, followed by intranasal inoculation with an invasive serotype of S. pneumoniae. CS exposure alone caused no detectable lung injury or bronchoalveolar lavage (BAL) inflammation. During pneumococcal infection, CS-exposed mice had greater survival than air-exposed mice, in association with reduced systemic spread of bacteria from the lungs. However, when mice were treated with antibiotics after infection to improve clinical relevance, the survival benefit was lost, and CS-exposed mice had more pulmonary edema, increased numbers of BAL monocytes, and elevated monocyte and lymphocyte chemokines. CS-exposed antibiotic-treated mice also had higher serum surfactant protein D and angiopoietin-2, consistent with more severe lung epithelial and endothelial injury. The results indicate that acute CS exposure enhances the recruitment of immune cells to the lung during bacterial pneumonia, an effect that may provide microbiological benefit but simultaneously exposes the mice to more severe inflammatory lung injury. The inclusion of antibiotic treatment in preclinical studies of acute lung injury in bacterial pneumonia may enhance clinical relevance, particularly for future studies of current or emerging tobacco products.


Asunto(s)
Lesión Pulmonar Aguda , Antibacterianos/farmacología , Neumonía Bacteriana , Neumonía Neumocócica , Streptococcus pneumoniae/metabolismo , Contaminación por Humo de Tabaco/efectos adversos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Femenino , Ratones , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/metabolismo , Neumonía Bacteriana/patología , Neumonía Neumocócica/tratamiento farmacológico , Neumonía Neumocócica/metabolismo , Neumonía Neumocócica/patología , Edema Pulmonar/tratamiento farmacológico , Edema Pulmonar/metabolismo , Edema Pulmonar/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...