Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 801, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963887

RESUMEN

We present a self-consistent, large ensemble, high-resolution global dataset of long-term future climate, which accounts for the uncertainty in climate system response to anthropogenic emissions of greenhouse gases and in geographical patterns of climate change. The dataset is developed by applying an integrated spatial disaggregation (SD) - bias-correction (BC) method to climate projections from the MIT Integrated Global System Model (IGSM). Four emission scenarios are considered that represent energy and environmental policies and commitments of potential future pathways, namely, Reference, Paris Forever, Paris 2 °C and Paris 1.5 °C. The dataset contains nine key meteorological variables on a monthly scale from 2021 to 2100 at a spatial resolution of 0.5°x 0.5°, including precipitation, air temperature (mean, minimum and maximum), near-surface wind speed, shortwave and longwave radiation, specific humidity, and relative humidity. We demonstrate the dataset's ability to represent climate-change responses across various regions of the globe. This dataset can be used to support regional-scale climate-related impact assessments of risk across different applications that include hydropower, water resources, ecosystem, agriculture, and sustainable development.

2.
Environ Sci Technol ; 54(4): 2411-2421, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31934755

RESUMEN

High-albedo materials reflect more solar radiation and, thereby, alter the earth's radiative balance. Increasing pavement albedo, therefore, has been considered as a technological strategy to mitigate global warming. Previous studies have evaluated this strategy using global average models. To factor this effect into life cycle assessments, location-specific models of the albedo effect for pavements are required. A parametric analytical model is developed to estimate the radiative forcing (RF) using a novel model form and an iterative solution approach. The new model is extended to estimate the corresponding global warming potential (GWP) over an analysis period of 50 years for an albedo change in a pavement surface. This was applied to quantify the GWP impacts of increasing pavement albedo in 14 cities across various climate zones in the US. For the United States, the GWP in kg CO2 equivalent per square meter of altered surface ranges from 0.8 to 1.6 per 0.01 change in albedo, a range of more than 40%. Analysis of a hypothetical albedo change to all darker pavements in the US would produce a negative RF of a magnitude equivalent to that associated with a reduction in CO2 emissions of more than 17 Mton per year.


Asunto(s)
Clima , Calentamiento Global , Ciudades , Cambio Climático
3.
Nat Commun ; 9(1): 660, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440736

RESUMEN

Efforts to estimate the physical and economic impacts of future climate change face substantial challenges. To enrich the currently popular approaches to impact analysis-which involve evaluation of a damage function or multi-model comparisons based on a limited number of standardized scenarios-we propose integrating a geospatially resolved physical representation of impacts into a coupled human-Earth system modeling framework. Large internationally coordinated exercises cannot easily respond to new policy targets and the implementation of standard scenarios across models, institutions and research communities can yield inconsistent estimates. Here, we argue for a shift toward the use of a self-consistent integrated modeling framework to assess climate impacts, and discuss ways the integrated assessment modeling community can move in this direction. We then demonstrate the capabilities of such a modeling framework by conducting a multi-sectoral assessment of climate impacts under a range of consistent and integrated economic and climate scenarios that are responsive to new policies and business expectations.

4.
PLoS One ; 11(3): e0150633, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27028871

RESUMEN

The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.


Asunto(s)
Cambio Climático , Abastecimiento de Agua , Asia Sudoriental , Agua Potable , Predicción , Humanos , Modelos Estadísticos , Método de Montecarlo , Distribución Normal , Recursos Hídricos
5.
Science ; 326(5958): 1397-9, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19933101

RESUMEN

A global biofuels program will lead to intense pressures on land supply and can increase greenhouse gas emissions from land-use changes. Using linked economic and terrestrial biogeochemistry models, we examined direct and indirect effects of possible land-use changes from an expanded global cellulosic bioenergy program on greenhouse gas emissions over the 21st century. Our model predicts that indirect land use will be responsible for substantially more carbon loss (up to twice as much) than direct land use; however, because of predicted increases in fertilizer use, nitrous oxide emissions will be more important than carbon losses themselves in terms of warming potential. A global greenhouse gas emissions policy that protects forests and encourages best practices for nitrogen fertilizer use can dramatically reduce emissions associated with biofuels production.


Asunto(s)
Biocombustibles , Dióxido de Carbono , Óxido Nitroso , Agricultura , Atmósfera , Carbono , Cambio Climático , Simulación por Computador , Conservación de los Recursos Naturales , Ecosistema , Fertilizantes , Combustibles Fósiles , Modelos Económicos , Factores de Tiempo , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...