Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 664: 160-166, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29133177

RESUMEN

Traumatic brain injury (TBI) is a serious public health concern, especially injuries from repetitive insults. The main objective of this study was to immunocytochemically examine morphological alterations in astrocytes and microglia in the hippocampus 48h following a single blast versus multiple blasts in adult C57BL/6 mice. The effects of ketamine and xylazine (KX), two common anesthetic agents used in TBI research, were also evaluated due to the confounding effect of anesthetics on injury outcome. Results showed a significant increase in hypertrophic microglia that was limited to the outer molecular layer of the dentate gyrus, but only in the absence of KX. Although the presence or absence of KX had no effect on astrocytes following a single blast, a significant decrease in astrocytic immunoreactivity was observed in the stratum lacunosum moleculare following multiple blasts in the absence of KX. The morphological changes in astrocytes and microglia reported in this study reveal region-specific differences in the absence of KX that could have significant implications for our interpretation of glial alterations in animal models of injury.


Asunto(s)
Anestésicos/farmacología , Lesiones Traumáticas del Encéfalo/patología , Hipocampo/patología , Ketamina/farmacología , Xilazina/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Traumatismos por Explosión/patología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología
2.
Skelet Muscle ; 3(1): 28, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24314268

RESUMEN

BACKGROUND: Congenital muscular dystrophy Type 1A (MDC1A) is a severe, recessive disease of childhood onset that is caused by mutations in the LAMA2 gene encoding laminin-α2. Studies with both mouse models and primary cultures of human MDC1A myogenic cells suggest that aberrant activation of cell death is a significant contributor to pathogenesis in laminin-α2-deficiency. METHODS: To overcome the limited population doublings of primary cultures, we generated immortalized, clonal lines of human MDC1A myogenic cells via overexpression of both CDK4 and the telomerase catalytic component (human telomerase reverse transcriptase (hTERT)). RESULTS: The immortalized MDC1A myogenic cells proliferated indefinitely when cultured at low density in high serum growth medium, but retained the capacity to form multinucleate myotubes and express muscle-specific proteins when switched to low serum medium. When cultured in the absence of laminin, myotubes formed from immortalized MDC1A myoblasts, but not those formed from immortalized healthy or disease control human myoblasts, showed significantly increased activation of caspase-3. This pattern of aberrant caspase-3 activation in the immortalized cultures was similar to that found previously in primary MDC1A cultures and laminin-α2-deficient mice. CONCLUSIONS: Immortalized MDC1A myogenic cells provide a new resource for studies of pathogenetic mechanisms and for screening possible therapeutic approaches in laminin-α2-deficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...