Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 37(15): 4639-4646, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33826341

RESUMEN

We report the stress-strain effect of a stretchable natural rubber (NR)-calcium phosphate composite on the surface wettability (SW) using an innovative approach coupling a uniaxial tensile micromachine, goniometer, and microscope. In situ contact angle measurements in real time were performed during mechanical tension. Our results show that SW is guided by the stress-strain relationship with two different characteristics, depending on the static or dynamic experiments. The results evidenced the limits of the classical theory of wetting. Furthermore, based on the mechanically tunable SW of the system associated with the cytocompatibility of the NR composite, we have modeled such a system for application as a cell support. From the experimental surface energy value, our proposed 3D modeling numerical simulation predicted a window of opportunities for cell-NR survival under mechanical stimuli. The presented data and the thermodynamics-based theoretical approach enable not only accurate correlation of SW with mechanical properties of the NR composite but also provide huge potential for future cell supportability in view of tissue engineering.

2.
J Biomater Appl ; 32(9): 1276-1288, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29409376

RESUMEN

Poly(lactide-co-ε-caprolactone) (PLCL) has been reported to be a good candidate for tissue engineering because of its good biocompatibility. Particularly, a braided PLCL scaffold (PLL/PCL ratio = 85/15) has been recently designed and partially validated for ligament tissue engineering. In the present study, we assessed the in vivo biocompatibility of acellular and cellularised scaffolds in a rat model. We then determined its in vitro biocompatibility using stem cells issued from both bone marrow and Wharton Jelly. From a biological point of view, the scaffold was shown to be suitable for tissue engineering in all these cases. Secondly, while the initial mechanical properties of this scaffold have been previously reported to be adapted to load-bearing applications, we studied the evolution in time of the mechanical properties of PLCL fibres due to hydrolytic degradation. Results for isolated PLCL fibres were extrapolated to the fibrous scaffold using a previously developed numerical model. It was shown that no accumulation of plastic strain was to be expected for a load-bearing application such as anterior cruciate ligament tissue engineering. However, PLCL fibres exhibited a non-expected brittle behaviour after two months. This may involve a potential risk of premature failure of the scaffold, unless tissue growth compensates this change in mechanical properties. This combined study emphasises the need to characterise the properties of biomaterials in a pluridisciplinary approach, since biological and mechanical characterisations led in this case to different conclusions concerning the suitability of this scaffold for load-bearing applications.


Asunto(s)
Materiales Biocompatibles/química , Poliésteres/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Células Cultivadas , Humanos , Hidrólisis , Ensayo de Materiales , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratas Desnudas , Resistencia a la Tracción
3.
J Mech Behav Biomed Mater ; 68: 134-143, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28161663

RESUMEN

Alginate-based hydrogel scaffolds are widely used in the field of cartilage regeneration and repair. If the effect of autoclaving on the alginate powder is well known, it is not the same for the possible effects of the sterilization UV treatment on the properties of the hydrogel after polymerization. To select an effective sterilization treatment of alginate-based materials, one must find what are inter-relationship between the characteristics (chemical, physical and mechanical) of alginate-based hydrogel during sterilization, and what consequences have affected on cell behavior. In this study, we investigated the influence of UV sterilization treatments (UV-1 and UV-2: 25 and 50min, respectively) and autoclaving to obtain alginate (Alg)/hyaluronic acid (HA) hydrogel, as well as further evaluated the relationship between physicochemical properties and cell behavior of Alg/HA hydrogel after UVs and autoclaving. The physicochemical properties of this mixture at the powder or polymerized states were analyzed using ATR-FTIR, HPLC-SEC, rheological, indentation testing and sterility testing. The cell behaviors of hydrogels were evaluated by cell viability and proliferation, and chondrogenic differentiation. The effects of treatment parameters and their correlation with the others characteristics were determined statistically by Principal Component Analysis (PCA). In this study, we have shown that the cell behavior in alginate-based hydrogels was not only regulated by physicochemical properties (as molar mass or/and viscosity), but also associated with the controlling of sterilization time. It can provide a basis for choosing an effective method of sterilization, which can keep the mechanical or physical-chemical properties of Alg-based hydrogel scaffold and maintain its cytocompatibility and its ability to induce chondrogenesis from mesenchymal stem cells.


Asunto(s)
Alginatos/química , Condrogénesis , Hidrogeles/química , Células Madre Mesenquimatosas/citología , Esterilización , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...