Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 22(1): 149, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965504

RESUMEN

BACKGROUND: Organisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wild Saccharomyces cerevisiae yeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated "cross protection" mechanisms, where mild 'primary' doses of one stress can enhance tolerance to severe doses of a different 'secondary' stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. RESULTS: During the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2 scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2 resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whether CTT1 function was fully necessary for acquired H2O2 resistance. Some strains exhibited partial dispensability of CTT1 when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels of CTT1 dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. CONCLUSIONS: Ultimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms.


Asunto(s)
Peróxido de Hidrógeno , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Etanol/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de los fármacos , Presión Osmótica , Catalasa/metabolismo , Catalasa/genética , Variación Genética
2.
J Microbiol Biol Educ ; 25(1): e0002024, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591892

RESUMEN

As one of the most famous fermented drinks in the world, beer is an especially relatable topic for microbiology courses. Here, we describe a short and easily adaptable module based on the antibacterial properties of hops used in brewing. By the 15th century, beer recipes included hops (the flower of the Humulus lupulus plant) as a bittering agent and antimicrobial. By the 19th century, the highly hopped Indian Pale Ale (IPA) became popular, and a modern myth has emerged that IPAs were invented to survive long ocean voyages such as from Britain to India. With that myth in mind, we designed a hypothesis-driven microbiology lab module that tests the plausibility of this brewing myth-namely that highly hopped beers possess enough antibacterial activity to prevent spoilage, while lowly hopped beers do not. The overall design of the module is to test the antimicrobial properties of hops using petri plates containing varying concentrations of hop extract. The module includes hypothesis generation and testing related to bacterial physiology and cell envelope morphology (hops are not equally effective against Gram-positive and Gram-negative bacteria) and to mechanisms of antimicrobial resistance (as beer spoilage bacteria have repeatedly evolved hop resistance). Pre- and post-assessment showed that students made significant gains in the learning objectives for the module, which encourages critical thinking and hypothesis testing by linking microbial physiology and antimicrobial resistance to an important and topical real-world application.

3.
Artículo en Inglés | MEDLINE | ID: mdl-34594437

RESUMEN

Microbial fermentation is a common form of metabolism that has been exploited by humans to great benefit. Industrial fermentation currently produces a myriad of products ranging from biofuels to pharmaceuticals. About one-third of the world's food is fermented, and the brewing of fermented beverages in particular has an ancient and storied history. Because fermentation is so intertwined with our daily lives, the topic is easily relatable to students interested in real-world applications for microbiology. Here, we describe the curriculum for a guided inquiry-based laboratory course that combines yeast molecular ecology and brewing. The rationale for the course is to compare commercial Saccharomyces cerevisiae yeast strains, which have been domesticated through thousands of generations of selection, with wild yeast, where there is growing interest in their potentially unique brewing characteristics. Because wild yeasts are so easy to isolate, identify, and characterize, this is a great opportunity to present key concepts in molecular ecology and genetics in a way that is relevant and accessible to students. We organized the course around three main modules: isolation and identification of wild yeast, phenotypic characterization of wild and commercial ale yeast strains, and scientific design of a brewing recipe and head-to-head comparison of the performance of a commercial and wild yeast strain in the brewing process. Pre- and postassessment showed that students made significant gains in the learning objectives for the course, and students enjoyed connecting microbiology to a real-world application.

4.
BMC Genomics ; 21(1): 249, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197587

RESUMEN

BACKGROUND: The increasing number of transcriptomic datasets has allowed for meta-analyses, which can be valuable due to their increased statistical power. However, meta-analyses can be confounded by so-called "batch effects," where technical variation across different batches of RNA-seq experiments can clearly produce spurious signals of differential expression and reduce our power to detect true differences. While batch effects can sometimes be accounted for, albeit with caveats, a better strategy is to understand their sources to better avoid them. In this study, we examined the effects of RNA isolation method as a possible source of batch effects in RNA-seq design. RESULTS: Based on the different chemistries of "classic" hot phenol extraction of RNA compared to common commercial RNA isolation kits, we hypothesized that specific mRNAs may be preferentially extracted depending upon method, which could masquerade as differential expression in downstream RNA-seq analyses. We tested this hypothesis using the Saccharomyces cerevisiae heat shock response as a well-validated environmental response. Comparing technical replicates that only differed in RNA isolation method, we found over one thousand transcripts that appeared "differentially" expressed when comparing hot phenol extraction with the two kits. Strikingly, transcripts with higher abundance in the phenol-extracted samples were enriched for membrane proteins, suggesting that indeed the chemistry of hot phenol extraction better solubilizes those species of mRNA. CONCLUSIONS: Within a self-contained experimental batch (e.g. control versus treatment), the method of RNA isolation had little effect on the ability to identify differentially expressed transcripts. However, we suggest that researchers performing meta-analyses across different experimental batches strongly consider the RNA isolation methods for each experiment.


Asunto(s)
Fraccionamiento Químico/métodos , ARN de Hongos/aislamiento & purificación , Saccharomyces cerevisiae/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Fenol/química , ARN de Hongos/antagonistas & inhibidores , Proyectos de Investigación , Análisis de Secuencia de ARN
5.
PLoS Genet ; 14(4): e1007335, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29649251

RESUMEN

Gene expression variation is extensive in nature, and is hypothesized to play a major role in shaping phenotypic diversity. However, connecting differences in gene expression across individuals to higher-order organismal traits is not trivial. In many cases, gene expression variation may be evolutionarily neutral, and in other cases expression variation may only affect phenotype under specific conditions. To understand connections between gene expression variation and stress defense phenotypes, we have been leveraging extensive natural variation in the gene expression response to acute ethanol in laboratory and wild Saccharomyces cerevisiae strains. Previous work found that the genetic architecture underlying these expression differences included dozens of "hotspot" loci that affected many transcripts in trans. In the present study, we provide new evidence that one of these expression QTL hotspot loci affects natural variation in one particular stress defense phenotype-ethanol-induced cross protection against severe doses of H2O2. A major causative polymorphism is in the heme-activated transcription factor Hap1p, which we show directly impacts cross protection, but not the basal H2O2 resistance of unstressed cells. This provides further support that distinct cellular mechanisms underlie basal and acquired stress resistance. We also show that Hap1p-dependent cross protection relies on novel regulation of cytosolic catalase T (Ctt1p) during ethanol stress in a wild oak strain. Because ethanol accumulation precedes aerobic respiration and accompanying reactive oxygen species formation, wild strains with the ability to anticipate impending oxidative stress would likely be at an advantage. This study highlights how strategically chosen traits that better correlate with gene expression changes can improve our power to identify novel connections between gene expression variation and higher-order organismal phenotypes.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Variación Genética , Sitios de Carácter Cuantitativo/genética , Saccharomyces cerevisiae/genética , Catalasa/genética , Catalasa/metabolismo , Mapeo Cromosómico , Cromosomas Fúngicos/genética , Protección Cruzada/genética , Proteínas de Unión al ADN/genética , Farmacorresistencia Fúngica/genética , Etanol/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Oxidantes/metabolismo , Oxidantes/farmacología , Peroxidasa/genética , Peroxidasa/metabolismo , Fenotipo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...