RESUMEN
The adsorption and photodegradation of acridine orange (AO) and acriflavine (AF) dyes on two mesoporous titania crystalline phases, anatase and rutile, were experimentally studied. Anatase and rutile were characterized by nitrogen adsorption, electron scanning and transmission microscopy, and X-ray diffraction. The adsorption capacity of rutile was higher than that of anatase, while the reverse is observed for photodegradation of both dyes. The adsorption of AF on both adsorbents was higher than that of AO, which was related with the smaller size of AF molecules compared with those of AO, therefore the access of AF to the adsorption sites is favored.
Asunto(s)
Naranja de Acridina/química , Acriflavina/química , Colorantes Fluorescentes/química , Procesos Fotoquímicos , Titanio/química , Contaminantes Químicos del Agua/química , Adsorción , Microscopía Electrónica de Rastreo , Nitrógeno/química , Soluciones/química , Espectroscopía Infrarroja por Transformada de Fourier , Eliminación de Residuos Líquidos/métodos , Difracción de Rayos XRESUMEN
The aggregation properties of 2-, 3-, and 4-fluorobenzoic acids (2FBA, 3FBA, and 4FBA, respectively) and their salts with hexadecyltrimethylammonium cations (HTA2FB, HTA3FB, and HTA4FB) in water were studied with a battery of techniques. Their activity at the air/solution interface has been also studied. The position of the fluorine atom in the acid affected the solubility, adsorption, and aggregation in the pure acids solutions. The 4FBA is less water soluble, more hydrophobic, and has the lower critical aggregation concentration of the three isomers. The behavior of the HTA2FB compound in aqueous solution is different from that of HTA3FB and HTA4FB. The critical micelle concentration, critical concentration for sphere-to-rod-like micelle transition, and Krafft point of HTA3FB and HTA4FB are lower than those of the other surfactant but their surface activities are higher. The differences between the HTA2FB and the other two surfactants have been explained on the basis of the regular solution theory of mixed micelles and in light of the analysis of the hydration shell of the acids through molecular dynamic simulations. The results of the present work suggest that the different behaviors are due to a combination of different dehydration tendencies and the steric possibility of inclusion of the counterions in the micelle palisade layer. The formation of rod-like micelles by HTA2FB, while the tetradecyltrimethylammonium 2-fluorobenzoate only forms spherical aggregates, is explained on the basis of the packing parameter. The mentioned factors are complementary to others presented in literature. These conditions may be used in the rational design of micelles by means of molecular dynamics simulations, reducing the trial-and-error approach used to date.
RESUMEN
The phase and rheological behavior of hexadecyl(trimethyl)azanium; 2-hydroxybenzoate (CTAS), and water as a function of surfactant concentration and temperature are investigated here. The critical micellization concentration (cmc(1)) and the concentration at which the structure of aggregates changes (cmc(2)) as well as the Krafft temperature (T(K)) are reported. A large micellar solution region exhibiting high viscosity, as well as hexagonal- and lamellar-phase regions were identified. In the dilute region, below the overlapping entanglement concentration (C*), the micellar solutions exhibit shear thickening. Above C*, wormlike micelles form and the solutions show strong viscoelasticity with Maxwell behavior in the linear regime and shear banding flow in the non-linear regime. The linear viscoelastic regime was analyzed with the Granek-Cates model, showing that the relaxation is controlled by the kinetics of reformation-and-scission of the micelles. The steady response in the non-linear regime is compared with the predictions of the Bautista-Manero-Puig (BMP) and the Giesekus models.
Asunto(s)
Compuestos de Cetrimonio/química , Ácido Salicílico/química , Agua/química , Cetrimonio , Cinética , Micelas , Transición de Fase , Reología , Tensoactivos/química , TemperaturaRESUMEN
In this work we explore the noise characteristics in lithographically-defined two terminal devices containing self-assembled InAs/InP quantum dots. The experimental ensemble of InAs dots show random telegraph noise (RTN) with tuneable relative amplitude-up to 150%-in well defined temperature and source-drain applied voltage ranges. Our numerical simulation indicates that the RTN signature correlates with a very low number of quantum dots acting as effective charge storage centres in the structure for a given applied voltage. The modulation in relative amplitude variation can thus be associated to the altered electrostatic potential profile around such centres and enhanced carrier scattering provided by a charged dot.
Asunto(s)
Interpretación Estadística de Datos , Iluminación/instrumentación , Modelos Estadísticos , Puntos Cuánticos , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Inverse gas chromatography (IGC) has been used to measure the interaction parameter between two twin-tailed cationic surfactants. Didodecyldimethylammonium (DDAB) and dioctadecyldimethylammonium (DODAB) bromides and their mixtures were used as stationary phases. IGC and DSC techniques have been used for the determination of the temperature zone of working. The activity coefficients at infinite dilution (on a mole fraction basis) were calculated for eleven probe solutes on each pure surfactant column. Values of interaction parameter between surfactants obtained at four weight fractions of the mixtures and at five temperatures are positive and suggested that the interactions is more unfavourable with the increment of DODAB concentration in the mixture. The results are interpreted on the basis of partial miscibility between DDAB and DODAB.
Asunto(s)
Cromatografía de Gases/métodos , Tensoactivos/química , Cationes/química , Calor , Compuestos de Amonio Cuaternario/químicaRESUMEN
The aqueous mixed system decyltrimethylammonium bromide (C(10)TAB)-hexadecyltrimethylammonium bromide (C(16)TAB) was studied by conductivity, ion-selective electrodes, surface tension, and fluorescence spectroscopy techniques. The mixture critical micelle concentration, cmc(*), aggregation number, N( *), and micelle molar conductivity, Lambda(M)(cmc), showed that the system aggregation is strongly nonideal. Both cmc(*) and N( *) results were analyzed with two different procedures: (i) the regular solution theory on mixed micelles or Rubingh's theory, and (ii) by the determination of the partial critical micelle concentration of the amphiphile component i in the presence of a constant concentration of the other amphiphile component, cmc(i)( *). The Rubingh procedure gives micelles richer in C(16)TAB than the overall mixtures, while procedure (ii) gives micelles having the same composition as in the complete surfactant mixture (alpha(C(10)TAB). Mixed micelles are larger than pure surfactant ones, with nonspherical shape. Using a literature model, the cause of the synergistic effect seems to be a reduction of the hydrocarbon/water contact at the micelle surface when mixed micelles form. Conductivity and ion-selective electrodes indicate that highly ionized premicelles form immediately before the cmc(*). The air/solution interface is strongly nonideal and much richer in C(16)TAB than the composition in the bulk. When micelles form there is a strong desorption from the air/solution interface because micelles are energetically favored when compared with the monolayer.
RESUMEN
The phase and rheological behaviors of the polymerizable surfactant, cetyltrimethylammonium benzoate (CTAVB), and water as a function of surfactant concentration and temperature are investigated here. The critical micelle concentration (cmc) and the (cmc(2)), as well as the Krafft temperature (T(K)), are reported. A large highly viscous micellar solution region and hexagonal- and lamellar-phase regions were identified. The micellar solutions exhibit shear thickening in the dilute regime, below the overlapping or entanglement concentration. At higher concentrations, wormlike micelles form and the solutions show strong viscoelasticity and Maxwell behavior in the linear regime and shear banding flow in the nonlinear regime. The linear viscoelastic regime is analyzed with the Granek-Cates model, showing that the relaxation is controlled by the kinetics of reformation and scission of the micelles. The steady and unsteady responses in the nonlinear regime are compared with the predictions of the Bautista-Manero-Puig (BMP) model. Model predictions follow the experimental data closely.
RESUMEN
The effects of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on the electrochemical behavior of iron were studied by potentiodynamic and potentiostatic techniques and open-circuit potential measurements. Experiments were made in both neutral and alkaline AOT solutions (pH 7 and pH 12). It was found that AOT-assisted dissolution is initiated on a passivated iron surface and that the oxidation current leads to the formation of a gel-like film on the electrode surface. This dissolution process was investigated as a function of pH, potential, and electrode rotation rate and the corrosion products were characterized by polarizing microscopy, SEM/EDX, and IR spectroscopy. The gel-like material is a mixed NaAOT-Fe(AOT)3 lamellar mesophase and a structure for this mesophase is proposed.
RESUMEN
The mixed surfactant system sodium 10-undecenoate (SUD)-dodecyltrimethylammonium bromide (DTAB) was studied by computational simulation to determine the composition and structure of the mixed microstructures. Results were contrasted with experimental data obtained from literature and our own laboratory. The modelization predicts spherical or cylindrical micelles with a preferential composition of SUD-DTAB of about 1:2, while the system predicts a lamellar structure with a proportion of 1:1 when SUD is replaced by the saturated soap sodium undecanoate. The model also predicts the deep inclusion of bromide ions in the micelle Stern layer. All predictions were in agreement with previous experimental results.
RESUMEN
The question of whether or not DNA is intrinsically conducting is still a challenge. The ongoing debate on DNA molecules as an electronic material has so far underestimated a key distinction of the system: the role of base pairing in opposition to correlations along each chain. We show that a disordered base paired double chain presents truly or, at least, effectively delocalized states. This effect is irrespective to the sequencing along each chain.