Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 356(6340): 832-837, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28546208

RESUMEN

Precise timekeeping is critical to metrology, forming the basis by which standards of time, length, and fundamental constants are determined. Stable clocks are particularly valuable in spectroscopy because they define the ultimate frequency precision that can be reached. In quantum metrology, the qubit coherence time defines the clock stability, from which the spectral linewidth and frequency precision are determined. We demonstrate a quantum sensing protocol in which the spectral precision goes beyond the sensor coherence time and is limited by the stability of a classical clock. Using this technique, we observed a precision in frequency estimation scaling in time T as T-3/2 for classical oscillating fields. The narrow linewidth magnetometer based on single spins in diamond is used to sense nanoscale magnetic fields with an intrinsic frequency resolution of 607 microhertz, which is eight orders of magnitude narrower than the qubit coherence time.

2.
Phys Rev Lett ; 108(24): 240505, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23004249

RESUMEN

Ground states of spin lattices can serve as a resource for measurement-based quantum computation. Ideally, the ability to perform quantum gates via measurements on such states would be insensitive to small variations in the Hamiltonian. Here, we describe a class of symmetry-protected topological orders in one-dimensional systems, any one of which ensures the perfect operation of the identity gate. As a result, measurement-based quantum gates can be a robust property of an entire phase in a quantum spin lattice, when protected by an appropriate symmetry.

3.
Opt Express ; 20(1): 426-39, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22274366

RESUMEN

We present an intuitive reasoning and derivation leading to an approximated, simple closed-form model for predicting and explaining the general emergence of enhanced transmission resonances through rectangular, optically thick metallic gratings in various configurations and polarizations. This model is based on an effective index approximation and it unifies in a simple way the underlying mechanism of enhanced transmission as emerging from standing wave resonances of the different diffraction orders of periodic structures. The model correctly predicts the conditions for the enhanced transmission resonances in various geometrical configurations, for both TE and TM polarizations, and in both the subwavelength and non-subwavelength spectral regimes, using the same underlying mechanism and one simple closed-form equation, and does not require explicitly invoking specific polarization dependent mechanisms. The known excitation of surface plasmons polaritons or slit cavity modes, emerge as limiting cases of a more general condition. This equation can be used to easily design and analyze the optical properties of a wide range of rectangular metallic transmission gratings.


Asunto(s)
Metales/química , Modelos Teóricos , Refractometría/métodos , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Luz , Dispersión de Radiación
4.
Nano Lett ; 11(4): 1630-5, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21443242

RESUMEN

We demonstrate a directional beaming of photons emitted from nanocrystal quantum dots that are embedded in a subwavelength metallic nanoslit array with a divergence angle of less than 4°. We show that the eigenmodes of the structure result in localized electromagnetic field enhancements at the Bragg cavity resonances, which could be controlled and engineered in both real and momentum space. The photon beaming is achieved using the enhanced resonant coupling of the quantum dots to these Bragg cavity modes, which dominates the emission properties of the quantum dots. We show that the emission probability of a quantum dot into the narrow angular mode is 20 times larger than the emission probability to all other modes. Engineering nanocrystal quantum dots with subwavelength metallic nanostructures is a promising way for a range of new types of active optical devices, where spatial control of the optical properties of nanoemitters is essential, on both the single and many photons level.


Asunto(s)
Metales/química , Nanoestructuras/química , Puntos Cuánticos , Refractometría/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Ensayo de Materiales , Nanoestructuras/ultraestructura , Fotones , Dispersión de Radiación
5.
Opt Express ; 19(2): 1617-25, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21263701

RESUMEN

We show a large enhancement of two-photon absorption processes in nanocrystal quantum dots and of light upconversion efficiency from the IR to the near-IR spectral regime, using a hybrid optical device in which near-IR emitting InAs quantum dots were embedded on top a metallic nanoslit array. The resonant enhancement of these nonlinear optical processes is due to the strong local electromagnetic field enhancements inside the nanoslit array structure at the extraordinary transmission resonances. A maximal two-photon absorption enhancement of more than 20 was inferred. Different high field regions were identified for different polarizations, which can be used for designing and optimizing efficient nonlinear processes in such hybrid structures. Combining nanocrystal quantum dots with subwavelength metallic nanostructures is therefore a promising way for a range of possible nonlinear optical devices.


Asunto(s)
Arsenicales/química , Indio/química , Iluminación/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Puntos Cuánticos , Refractometría/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...