Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
NPJ Precis Oncol ; 8(1): 163, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075115

RESUMEN

Two hypermutated colon cancer cases with patient-derived cell lines, peripheral and tumor-infiltrating T cells available were selected for detailed investigation of immunological response.T cells co-cultured with autologous tumor cells showed only low levels of pro-inflammatory cytokines and failed at tumor recognition. Similarly, treatment of co-cultures with immune checkpoint inhibitors (ICI) did not boost antitumor immune responses. Since proteinase inhibitor 9 (PI-9) was detected in tumor cells, a specific inhibitor (PI-9i) was used in addition to ICI in T cell cytotoxicity testing. However, only pre-stimulation with tumor-specific peptides (cryptic and neoantigenic) significantly increased recognition and elimination of tumor cells by T cells independently of ICI or PI-9i.We showed, that ICI resistant tumor cells can be targeted by tumor-primed T cells and also demonstrated the superiority of tumor-naïve peripheral blood T cells compared to highly exhausted tumor-infiltrating T cells. Future precision immunotherapeutic approaches should include multimodal strategies to successfully induce durable anti-tumor immune responses.

2.
Infect Immun ; 92(5): e0006024, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38619302

RESUMEN

Melioidosis is an emerging tropical infection caused by inhalation, inoculation, or ingestion of the flagellated, facultatively intracellular pathogen Burkholderia pseudomallei. The melioidosis case fatality rate is often high, and pneumonia, the most common presentation, doubles the risk of death. The alveolar macrophage is a sentinel pulmonary host defense cell, but the human alveolar macrophage in B. pseudomallei infection has never been studied. The objective of this study was to investigate the host-pathogen interaction of B. pseudomallei infection with the human alveolar macrophage and to determine the role of flagellin in modulating inflammasome-mediated pathways. We found that B. pseudomallei infects primary human alveolar macrophages but is gradually restricted in the setting of concurrent cell death. Electron microscopy revealed cytosolic bacteria undergoing division, indicating that B. pseudomallei likely escapes the alveolar macrophage phagosome and may replicate in the cytosol, where it triggers immune responses. In paired human blood monocytes, uptake and intracellular restriction of B. pseudomallei are similar to those observed in alveolar macrophages, but cell death is reduced. The alveolar macrophage cytokine response to B. pseudomallei is characterized by marked interleukin (IL)-18 secretion compared to monocytes. Both cytotoxicity and IL-18 secretion in alveolar macrophages are partially flagellin dependent. However, the proportion of IL-18 release that is driven by flagellin is greater in alveolar macrophages than in monocytes. These findings suggest differential flagellin-mediated inflammasome pathway activation in the human alveolar macrophage response to B. pseudomallei infection and expand our understanding of intracellular pathogen recognition by this unique innate immune lung cell.


Asunto(s)
Burkholderia pseudomallei , Flagelina , Interacciones Huésped-Patógeno , Inflamasomas , Macrófagos Alveolares , Humanos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/microbiología , Inflamasomas/inmunología , Inflamasomas/metabolismo , Burkholderia pseudomallei/inmunología , Flagelina/inmunología , Flagelina/metabolismo , Interacciones Huésped-Patógeno/inmunología , Melioidosis/inmunología , Melioidosis/microbiología , Células Cultivadas
3.
Front Psychiatry ; 14: 1206805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025428

RESUMEN

Introduction Background: Depression is an often chronic condition, characterized by wide-ranging physical, cognitive and psychosocial symptoms that can lead to disability, premature mortality or suicide. It affects 350 million people globally, yet up to 30% do not respond to traditional treatment, creating an urgent need for novel non-pharmacological treatments. This open-label naturalistic study assesses the practical feasibility, tolerability, and clinical effectiveness of home-administered transcranial direct current stimulation (tDCS) with asynchronous remote supervision, in the treatment of depression. Method: Over the course of 3 weeks, 40 patients with depression received psychotherapy and half of this group also received daily bi-frontal tDCS stimulation of the dorsolateral prefrontal cortex. These patients received tDCS for 30 min per session with the anode placed over F3 and the cathode over F4, at an intensity of 2 mA for 21 consecutive days. We measured patients' level of depression symptoms at four time points using the Beck Depression Inventory, before treatment and at 1-week intervals throughout the treatment period. We monitored practical feasibility such as daily protocol compliance and tolerability including side effects, with the PlatoScience cloud-based remote supervision platform. Results: Of the 20 patients in the tDCS group, 90% were able to comply with the protocol by not missing more than three of their assigned sessions, and none dropped out of the study. No serious adverse events were reported, with only 14 instances of mild to moderate side effects and two instances of scalp pain rated as severe, out of a total of 420 stimulation sessions. Patients in the tDCS group showed a significantly greater reduction in depression symptoms after 3 weeks of treatment, compared to the treatment as usual (TAU) group [t(57.2) = 2.268, p = 0.027]. The tDCS group also showed greater treatment response (50%) and depression remission rates (75%) compared to the TAU group (5 and 30%, respectively). Discussion Conclusion: These findings provide a possible indication of the clinical effectiveness of home-administered tDCS for the treatment of depression, and its feasibility and tolerability in combination with asynchronous supervision.

5.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36460334

RESUMEN

BACKGROUND: Patients with cancers that exhibit extraordinarily high somatic mutation numbers are ideal candidates for immunotherapy and enable identifying tumor-specific peptides through stimulation of tumor-reactive T cells (Tc). METHODS: Colorectal cancers (CRC) HROC113 and HROC285 were selected based on high TMB, microsatellite instability and HLA class I expression. Their HLA ligandome was characterized using mass spectrometry, compared with the HLA ligand atlas and HLA class I-binding affinity was predicted. Cryptic peptides were identified using Peptide-PRISM. Patients' Tc were isolated from either peripheral blood (pTc) or tumor material (tumor-infiltrating Tc, TiTc) and expanded. In addition, B-lymphoblastoid cells (B-LCL) were generated and used as antigen-presenting cells. pTc and TiTc were stimulated twice for 7 days using peptide pool-loaded B-LCL. Subsequently, interferon gamma (IFNγ) release was quantified by ELISpot. Finally, cytotoxicity against autologous tumor cells was assessed in a degranulation assay. RESULTS: 100 tumor-specific candidate peptides-97 cryptic peptides and 3 classically mutated neoantigens-were selected. The neoantigens originated from single nucleotide substitutions in the genes IQGAP1, CTNNB1, and TRIT1. Cryptic and neoantigenic peptides inducing IFNγ secretion of Tc were further investigated. Stimulation of pTc and TiTc with neoantigens and selected cryptic peptides resulted in increased release of cytotoxic granules in the presence of autologous tumor cells, substantiating their improved tumor cell recognition. Tetramer staining showed an enhanced number of pTc and TiTc specific for the IQGAP1 neoantigen. Subpopulation analysis prior to peptide stimulation revealed that pTc mainly consisted of memory Tc, whereas TiTc constituted primarily of effector and effector memory Tc. This allows to infer that TiTc reacting to neoantigens and cryptic peptides must be present within the tumor microenvironment. CONCLUSION: These results prove that the analyzed CRC present both mutated neoantigenic and cryptic peptides on their HLA class I molecules. Moreover, stimulation with these peptides significantly strengthened tumor cell recognition by Tc. Since the overall number of neoantigenic peptides identifiable by HLA ligandome analysis hitherto is small, our data emphasize the relevance of increasing the target scope for cancer vaccines by the cryptic peptide category.


Asunto(s)
Neoplasias Colorrectales , Péptidos , Humanos , Recuento de Linfocitos , Ensayo de Immunospot Ligado a Enzimas , Células Presentadoras de Antígenos , Microambiente Tumoral
6.
Occup Environ Med ; 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039758

RESUMEN

OBJECTIVES: Healthcare workers (HCWs) have been one of the most severely affected groups during the COVID-19 pandemic, though few studies have sought to determine the rate of undiagnosed cases among this population. In this study, we aim to determine the rate of undetected infection in HCWs, a potential source of nosocomial infection. METHODS: Serological screening for IgG and IgM antibodies against SARS-CoV-2 was carried out among HCWs from four different hospitals in Madrid, Spain, from 6 April to 25 April 2020; HCWs with a previous diagnosis of infection based on real-time reverse transcriptase-PCR assay performed after presenting compatible symptoms were excluded. Prevalence of IgG and IgM antibodies was calculated among HCWs to obtain the rate of COVID-19 presence of antibodies in each hospital. RESULTS: Of the 7121 HCWs studied, 6344 (89.09%) had not been previously diagnosed with COVID-19. A total of 5995 HCWs finally participated in the study, resulting in a participation rate of 94.49%. A positive IgM or IgG test against COVID-19 was revealed in 16.21% of the HCWs studied (n=972). CONCLUSION: This study reveals the importance of early detection of SARS-CoV-2 infection among HCWs to prevent nosocomial infection and exposure of patients, visitors and workers and the spread of COVID-19 in the overall community.

7.
Front Microbiol ; 11: 619542, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33569046

RESUMEN

Colistin is a last resort antibiotic against the critical status pathogen Pseudomonas aeruginosa. Virulence and related traits such as biofilm formation and serum resistance after exposure to sub-inhibitory levels of colistin have been underexplored. We cultivated P. aeruginosa in a semi-automated morbidostat device with colistin, metronidazole and a combination of the two antibiotics for 21 days, and completed RNA-Seq to uncover the transcriptional changes over time. Strains became resistant to colistin within this time period. Colistin-resistant strains show significantly increased biofilm formation: the cell density in biofilm increases under exposure to colistin, while the addition of metronidazole can remove this effect. After 7 days of colistin exposure, strains develop an ability to grow in serum, suggesting that colistin drives bacterial modifications conferring a protective effect from serum complement factors. Of note, strains exposed to colistin showed a decrease in virulence, when measured using the Galleria mellonella infection model. These phenotypic changes were characterized by a series of differential gene expression changes, particularly those related to LPS modifications, spermidine synthesis (via speH and speE) and the major stress response regulator rpoS. Our results suggest a clinically important bacterial evolution under sub-lethal antibiotic concentration leading to potential for significant changes in the clinical course of infection.

9.
Int J Med Microbiol ; 309(6): 151335, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31378704

RESUMEN

The type VI secretion system (T6SS) injects effector proteins into neighboring bacteria and host cells. Effector translocation is driven by contraction of a tubular sheath in the cytoplasm that expels an inner needle across the cell envelope. The AAA + ATPase ClpV disassembles and recycles the contracted sheath. While ClpV-1-GFP of the Burkholderia T6SS-1, which targets prokaryotic cells, assembles into randomly localized foci, ClpV-5-GFP of the virulence-associated T6SS-5 displays a polar distribution. The mechanisms underlying the localization of T6SSs to a particular site in the bacterial cell are currently unknown. We recently showed that ClpV-5-GFP retains its polar localization in the absence of all T6SS-5 components during infection of host cells. Herein, we set out to identify factors involved in the distribution of ClpV-5 and ClpV-1 in Burkholderia thailandensis. We show that focal assembly and polar localization of ClpV-5-GFP is not dependent on the intracellular host cell environment, known to contain the signal to induce T6SS-5 gene expression. In contrast to ClpV-5-GFP, localization of ClpV-1-GFP was dependent on the cognate T6SS. Foci formation of both ClpV5-GFP and ClpV-1-GFP was decreased by D cycloserine-mediated inhibition of peptidoglycan synthesis while treatment of B. thailandensis with A22 blocking the cytoskeletal protein MreB did not affect assembly of ClpV-5 and ClpV-1 into single discrete foci. Furthermore, we found that surface contact promotes but is not essential for localization of ClpV-5-GFP to the pole whereas expression of clpV-1-gfp appears to be induced by surface contact. In summary, the study provides novel insights into the localization of ClpV ATPases of T6SSs targeting prokaryotic and eukaryotic cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Burkholderia/fisiología , Sistemas de Secreción Tipo VI/metabolismo , Factores de Virulencia/metabolismo , Adhesión Bacteriana , Burkholderia/efectos de los fármacos , Burkholderia/genética , Cicloserina/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Células HeLa , Humanos , Peptidoglicano/biosíntesis , Peptidoglicano/efectos de los fármacos , Transporte de Proteínas/fisiología , Eliminación de Secuencia , Sistemas de Secreción Tipo VI/genética
10.
PLoS Negl Trop Dis ; 13(5): e0007354, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31067234

RESUMEN

BACKGROUND: Toll-like receptors (TLRs) are sentinel receptors of the innate immune system. TLR4 detects bacterial lipopolysaccharide (LPS) and TLR5 detects bacterial flagellin. A common human nonsense polymorphism, TLR5:c.1174C>T, results in a non-functional TLR5 protein. Individuals carrying this variant have decreased mortality from melioidosis, infection caused by the flagellated Gram-negative bacterium Burkholderia pseudomallei. Although impaired flagellin-dependent signaling in carriers of TLR5:c.1174C>T is well established, this study tested the hypothesis that a functional effect of TLR5:c.1174C>T is flagellin-independent and involves LPS-TLR4 pathways. METHODOLOGY/PRINCIPAL FINDINGS: Whole blood from two independent cohorts of individuals genotyped at TLR5:c.1174C>T was stimulated with wild type or aflagellated B. pseudomallei or purified bacterial motifs followed by plasma cytokine measurements. Blood from individuals carrying the TLR5:c.1174C>T variant produced less IL-6 and IL-10 in response to an aflagellated B. pseudomallei mutant and less IL-8 in response to purified B. pseudomallei LPS than blood from individuals without the variant. TLR5 expression in THP1 cells was silenced using siRNA; these cells were stimulated with LPS before cytokine levels in cell supernatants were quantified by ELISA. In these cells following LPS stimulation, silencing of TLR5 with siRNA reduced both TNF-α and IL-8 levels. These effects were not explained by differences in TLR4 mRNA expression or NF-κB or IRF activation. CONCLUSIONS/SIGNIFICANCE: The effects of the common nonsense TLR5:c.1174C>T polymorphism on the host inflammatory response to B. pseudomallei may not be restricted to flagellin-driven pathways. Moreover, TLR5 may modulate TLR4-dependent cytokine production. While these results may have broader implications for the role of TLR5 in the innate immune response in melioidosis and other conditions, further studies of the mechanisms underlying these observations are required.


Asunto(s)
Burkholderia pseudomallei/inmunología , Flagelina/inmunología , Melioidosis/genética , Melioidosis/inmunología , Polimorfismo Genético , Receptor Toll-Like 5/genética , Adolescente , Adulto , Anciano , Burkholderia pseudomallei/genética , Codón sin Sentido , Estudios de Cohortes , Femenino , Flagelina/genética , Humanos , Inmunidad Innata , Interleucina-10/genética , Interleucina-10/inmunología , Masculino , Melioidosis/microbiología , Persona de Mediana Edad , FN-kappa B/genética , FN-kappa B/inmunología , Mutación Puntual , Receptor Toll-Like 5/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Adulto Joven
11.
BMC Res Notes ; 12(1): 109, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819219

RESUMEN

OBJECTIVE: ClpV, the ATPase of the type VI secretion system (T6SS) recycles cytoplasmic T6SS proteins following effector translocation. Fluorescent protein fusions to ClpV showed that it localizes to discrete and dynamic foci. ClpV-1-sfGFP of the bacterial cell targeting T6SS-1 of Burkholderia thailandensis exhibits a virtually random localization, whereas ClpV-5-sfGFP of the T6SS-5 targeting host cells is located at one or both poles. The mechanisms underlying the differential localization pattern are not known. Previous analysis of T6SSs, which target bacterial cells revealed that ClpV foci formation is dependent on components of the T6SS. Here, we investigated if the T6SS-5 apparatus confers polar localization of ClpV-5. RESULTS: ClpV-5-sfGFP foci formation and localization was examined in a B. thailandensis mutant harboring a deletion of the entire T6SS-5 gene cluster. We found that ClpV-5-sfGFP localization to discrete foci was not abolished in the absence of the T6SS-5 apparatus. Furthermore, the number of ClpV-5-sfGFP foci displaying a polar localization was not significantly different from that of ClpV-5-sfGFP expressed in the wild type genetic background. These findings suggest the presence of a T6SS-independent localization mechanism for ClpV-5 of the T6SS-5 targeting host cells.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Bacterianas , Burkholderia , Sistemas de Secreción Tipo VI
12.
Front Microbiol ; 9: 935, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867844

RESUMEN

Burkholderia pseudomallei is a soil-dwelling bacterium able to survive not only under adverse environmental conditions, but also within various hosts which can lead to the disease melioidosis. The capability of B. pseudomallei to adapt to environmental changes is facilitated by the large number of regulatory proteins encoded by its genome. Among them are more than 60 uncharacterized LysR-type transcriptional regulators (LTTRs). Here we analyzed a B. pseudomallei mutant harboring a transposon in the gene BPSL0117 annotated as a LTTR, which we named gvmR (globally acting virulence and metabolism regulator). The gvmR mutant displayed a growth defect in minimal medium and macrophages in comparison with the wild type. Moreover, disruption of gvmR rendered B. pseudomallei avirulent in mice indicating a critical role of GvmR in infection. These defects of the mutant were rescued by ectopic expression of gvmR. To identify genes whose expression is modulated by GvmR, global transcriptome analysis of the B. pseudomallei wild type and gvmR mutant was performed using whole genome tiling microarrays. Transcript levels of 190 genes were upregulated and 141 genes were downregulated in the gvmR mutant relative to the wild type. Among the most downregulated genes in the gvmR mutant were important virulence factor genes (T3SS3, T6SS1, and T6SS2), which could explain the virulence defect of the gvmR mutant. In addition, expression of genes related to amino acid synthesis, glyoxylate shunt, iron-sulfur cluster assembly, and syrbactin metabolism (secondary metabolite) was decreased in the mutant. On the other hand, inactivation of GvmR increased expression of genes involved in pyruvate metabolism, ATP synthesis, malleobactin, and porin genes. Quantitative real-time PCR verified the differential expression of 27 selected genes. In summary, our data show that GvmR acts as an activating and repressing global regulator that is required to coordinate expression of a diverse set of metabolic and virulence genes essential for the survival in the animal host and under nutrient limitation.

13.
Front Microbiol ; 9: 3339, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687298

RESUMEN

The soil saprophyte and Tier I select agent Burkholderia pseudomallei can cause rapidly fatal infections in humans and animals. The capability of switching to an intracellular life cycle during infection appears to be a decisive trait of B. pseudomallei for causing disease. B. pseudomallei harbors multiple type VI secretion systems (T6SSs) orthologs of which are present in the surrogate organism Burkholderia thailandensis. Upon host cell entry and vacuolar escape into the cytoplasm, B. pseudomallei and B. thailandensis manipulate host cells by utilizing the T6SS-5 (also termed T6SS1) to form multinucleated giant cells for intercellular spread. Disruption of the T6SS-5 in B. thailandensis causes a drastic attenuation of virulence in wildtype but not in mice lacking the central innate immune adapter protein MyD88. This result suggests that the T6SS-5 is deployed by the bacteria to overcome innate immune responses. However, important questions in this field remain unsolved including the mechanism underlying T6SS-5 activity and its physiological role during infection. In this review, we summarize the current knowledge on the components and regulation of the T6SS-5 as well as its role in virulence in mammalian hosts.

14.
PLoS One ; 12(10): e0185715, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28973030

RESUMEN

Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl- ß-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and the host cell.


Asunto(s)
Burkholderia/metabolismo , Fusión Celular , Colesterol/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Línea Celular , Macrófagos/metabolismo , Ratones
15.
BMC Cancer ; 17(1): 555, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830374

RESUMEN

BACKGROUND: The Empty Spiracles Homeobox (EMX-) 2 gene has been associated with regulation of growth and differentiation in neuronal development. While recent studies provide evidence that EMX2 regulates tumorigenesis of various solid tumors, its role in colorectal cancer remains unknown. We aimed to assess the prognostic significance of EMX2 expression in stage III colorectal adenocarcinoma. METHODS: Expression levels of EMX2 in human colorectal cancer and adjacent mucosa were assessed by qRT-PCR technology, and results were correlated with clinical and survival data. siRNA-mediated knockdown and adenoviral delivery-mediated overexpression of EMX2 were performed in order to investigate its effects on the migration of colorectal cancer cells in vitro. RESULTS: Compared to corresponding healthy mucosa, colorectal tumor samples had decreased EMX2 expression levels. Furthermore, EMX2 down-regulation in colorectal cancer tissue was associated with distant metastasis (M1) and impaired overall patient survival. In vitro knockdown of EMX2 resulted in increased tumor cell migration. Conversely, overexpression of EMX2 led to an inhibition of tumor cell migration. CONCLUSIONS: EMX2 is frequently down-regulated in human colorectal cancer, and down-regulation of EMX2 is a prognostic marker for disease-free and overall survival. EMX2 might thus represent a promising therapeutic target in colorectal cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Expresión Génica , Proteínas de Homeodominio/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/secundario , Factores de Transcripción/genética , Adenoviridae/genética , Línea Celular Tumoral , Movimiento Celular/genética , Estudios de Cohortes , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/terapia , Femenino , Estudios de Seguimiento , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Proteínas de Homeodominio/metabolismo , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/terapia , Masculino , Estadificación de Neoplasias , Pronóstico , Factores de Transcripción/metabolismo , Transducción Genética
16.
Infect Immun ; 85(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28760929

RESUMEN

The human pathogen Burkholderia pseudomallei and the related species Burkholderia thailandensis are facultative intracellular bacteria characterized by the ability to escape into the cytosol of the host cell and to stimulate the formation of multinucleated giant cells (MNGCs). MNGC formation is induced via an unknown mechanism by bacterial type VI secretion system 5 (T6SS-5), which is an essential virulence factor in both species. Despite the vital role of the intracellular life cycle in the pathogenesis of the bacteria, the range of host cell types permissive for initiation and completion of the intracellular cycle is poorly defined. In the present study, we used several different types of human primary cells to evaluate bacterial entry, intracellular survival, and MNGC formation. We report the capacity of B. pseudomallei to enter, efficiently replicate in, and mediate MNGC formation of vein endothelial and bronchial epithelial cells, indicating that the T6SS-5 is important in the host-pathogen interaction in these cells. Furthermore, we show that B. pseudomallei invades fibroblasts and keratinocytes and survives inside these cells as well as in monocyte-derived macrophages and neutrophils for at least 17 h postinfection; however, MNGC formation is not induced in these cells. In contrast, infection of mixed neutrophils and RAW264.7 macrophages with B. thailandensis stimulated the formation of heterotypic MNGCs in a T6SS-5-dependent manner. In summary, the ability of the bacteria to enter and survive as well as induce MNGC formation in certain host cells may contribute to the pathogenesis observed in B. pseudomallei infection.


Asunto(s)
Burkholderia pseudomallei/fisiología , Células Gigantes/microbiología , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Fagocitos/microbiología , Animales , Bronquios/citología , Bronquios/microbiología , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/patogenicidad , Línea Celular , Células Cultivadas , Citosol/microbiología , Células Endoteliales/microbiología , Células Epiteliales/microbiología , Fibroblastos/microbiología , Humanos , Queratinocitos/microbiología , Ratones , Neutrófilos/microbiología , Sistemas de Secreción Tipo VI/metabolismo , Virulencia
18.
Front Psychol ; 7: 7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26834680

RESUMEN

OBJECTIVE: Internally guided actions are defined as being purposeful, self-generated and offering choices between alternatives. Intentional actions are essential to reach individual goals. In previous empirical studies, internally guided actions were predominantly related to functional responses in frontal and parietal areas. The aim of the present study was to distinguish event-related potentials and oscillatory responses of intentional actions and externally guided actions. In addition, we compared neurobiological findings of the decision which action to perform with those referring to the decision whether or not to perform an action. METHODS: Twenty-eight subjects participated in adapted go/nogo paradigms, including a voluntary selection condition allowing participants to (1) freely decide whether to press the response button or (2) to decide whether they wanted to press the response button with the right index finger or the left index finger. RESULTS: The reaction times were increased when participants freely decided whether and how they wanted to respond compared to the go condition. Intentional processes were associated with a fronto-centrally located N2 and P3 potential. N2 and P3 amplitudes were increased during intentional actions compared to instructed responses (go). In addition, increased activity in the alpha-, beta- and gamma-frequency range was shown during voluntary behavior rather than during externally guided responses. CONCLUSION: These results may indicate that an additional cognitive process is needed for intentional actions compared to instructed behavior. However, the neural responses were comparatively independent of the kind of decision that was made (1) decision which action to perform; (2) decision whether or not to perform an action). SIGNIFICANCE: The study demonstrates the importance of fronto-central alpha-, beta-, and gamma oscillations for voluntary behavior.

19.
Environ Microbiol ; 18(10): 3390-3402, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26743546

RESUMEN

Pseudomonas aeruginosa produces increased levels of alginate in response to oxygen-deprived conditions. The regulatory pathway(s) that links oxygen limitation to increased synthesis of alginate has remained elusive. In the present study, using immunofluorescence microscopy, we show that anaerobiosis-induced alginate production by planktonic PAO1 requires the diguanylate cyclase (DGC) SadC, previously identified as a regulator of surface-associated lifestyles. Furthermore, we found that the gene products of PA4330 and PA4331, located in a predicted operon with sadC, have a major impact on alginate production: deletion of PA4330 (odaA, for oxygen-dependent alginate synthesis activator) caused an alginate production defect under anaerobic conditions, whereas a PA4331 (odaI, for oxygen-dependent alginate synthesis inhibitor) deletion mutant produced alginate also in the presence of oxygen, which would normally inhibit alginate synthesis. Based on their sequence, OdaA and OdaI have predicted hydratase and dioxygenase reductase activities, respectively. Enzymatic assays using purified protein showed that unlike OdaA, which did not significantly affect DGC activity of SadC, OdaI inhibited c-di-GMP production by SadC. Our data indicate that SadC, OdaA and OdaI are components of a novel response pathway of P. aeruginosa that regulates alginate synthesis in an oxygen-dependent manner.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/metabolismo , Alginatos , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Ácido Glucurónico/biosíntesis , Ácidos Hexurónicos , Operón , Liasas de Fósforo-Oxígeno/genética , Pseudomonas aeruginosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...