Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Allergy Clin Immunol Glob ; 2(4): 100131, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37781651

RESUMEN

Background: The immunologic mechanisms underlying pulmonary type 2 inflammation, including the dynamics of eosinophil recruitment to the lungs, still need to be elucidated. Objective: We sought to investigate how IL-13-producing TH2 effector cells trigger eosinophil migration in house dust mite (HDM)-driven allergic pulmonary inflammation. Methods: Multiparameter and molecular profiling of murine lungs with HDM-induced allergy was investigated in the absence of IL-13 signaling by using IL-13Rα1-deficient mice and separately through adoptive transfer of CD4+ T cells from IL-5-deficient mice into TCRα-/- mice before allergic inflammation. Results: We demonstrated through single-cell techniques that HDM-driven pulmonary inflammation displays a profile characterized by TH2 effector cell-induced IL-13-dominated eosinophilic inflammation. Using HDM-sensitized IL-13Rα1-/- mice, we found a marked reduction in the influx of eosinophils into the lungs along with a significant downregulation of both CCL-11 and CCL-24. We further found that eosinophil trafficking to the lung relies on production of IL-13-driven CCL-11 and CCL-24 by fibroblasts and Ly6C+ (so-called classical) monocytes. Moreover, this IL-13-mediated eotaxin-dependent eosinophil influx to the lung tissue required IL-5-induced eosinophilia. Finally, we demonstrated that this IL-13-driven eosinophil-dominated pulmonary inflammation was critical for limiting bystander lung transiting Ascaris parasites in a model of allergy and helminth interaction. Conclusion: Our data suggest that IL-5-dependent allergen-specific TH2 effector cell response and subsequent signaling through the IL-13/IL-13Rα1 axis in fibroblasts and myeloid cells regulate the eotaxin-dependent recruitment of eosinophils to the lungs, with multiple downstream consequences, including bystander control of lung transiting parasitic helminths.

2.
PLoS Negl Trop Dis ; 16(5): e0010442, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617367

RESUMEN

BACKGROUND: Antigen tests for diagnosis and disease monitoring in some types of neurocysticercosis (NCC) are useful but access to testing has been limited by availability of proprietary reagents and/or kits. METHODS/PRINCIPAL FINDINGS: Three previously identified IgM-secreting hybridomas whose IgM products demonstrated specificity to Taenia solium underwent variable heavy and light chain sequencing and isotype conversion to mouse IgG. Screening of these recombinantly expressed IgG anti-Ts hybridomas, identified one (TsG10) with the highest affinity to crude Taenia antigen. TsG10 was then used as a capture antibody in a sandwich antigen detection immunoassay in combination with either a high titer polyclonal anti-Ts antibody or with biotinylated TsG10 (termed TsG10*bt). Using serum, plasma, and CSF samples from patients with active NCC and those from NCC-uninfected patients, ROC curve analyses demonstrated that the TsG10-TsG10-*bt assay achieved a 98% sensitivity and 100% specificity in detecting samples known to be antigen positive and outperformed the polyclonal based assay (sensitivity of 93% with 100% specificity). By comparing levels of Ts antigen (Ag) in paired CSF (n = 10) or plasma/serum (n = 19) samples from well-characterized patients with extra-parenchymal NCC early in infection and at the time of definitive cure, all but 2 (1 from CSF and 1 from plasma) became undetectable. There was a high degree of correlation (r = 0.98) between the Ag levels detected by this new assay and levels found by a commercial assay. Pilot studies indicate that this antigen can be detected in the urine of patients with active NCC. CONCLUSIONS/SIGNIFICANCE: A newly developed recombinant monoclonal antibody-based Ts Ag detection immunoassay is extremely sensitive in the detection of extra-parenchymal NCC and can be used to monitor the success of treatment in the CSF, serum/plasma and urine. The ability to produce recombinant TsG10 at scale should enable use of this antigen detection immunoassay wherever NCC is endemic. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifiers: NCT00001205 - & NCT00001645.


Asunto(s)
Neurocisticercosis , Taenia solium , Animales , Anticuerpos Antihelmínticos , Antígenos Helmínticos , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G , Inmunoglobulina M , Ratones , Neurocisticercosis/diagnóstico , Proteínas Recombinantes , Sensibilidad y Especificidad , Taenia solium/genética
3.
PLoS Pathog ; 17(3): e1009337, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33651853

RESUMEN

The establishment of type 2 responses driven by allergic sensitization prior to exposure to helminth parasites has demonstrated how tissue-specific responses can protect against migrating larval stages, but, as a consequence, allow for immune-mediated, parasite/allergy-associated morbidity. In this way, whether helminth cross-reacting allergen-specific antibodies are produced and play a role during the helminth infection, or exacerbate the allergic outcome awaits elucidation. Thus, the main objective of the study was to investigate whether house dust mite (HDM) sensitization triggers allergen-specific antibodies that interact with Ascaris antigens and mediate antibody-dependent deleterious effects on these parasites as well as, to assess the capacity of cross-reactive helminth proteins to trigger allergic inflammation in house dust mite presensitized mice. Here, we show that the sensitization with HDM-extract drives marked IgE and IgG1 antibody responses that cross-react with Ascaris larval antigens. Proteomic analysis of Ascaris larval antigens recognized by these HDM-specific antibodies identified Ascaris tropomyosin and enolase as the 2 major HDM homologues based on high sequence and structural similarity. Moreover, the helminth tropomyosin could drive Type-2 associated pulmonary inflammation similar to HDM following HDM tropomyosin sensitization. The HDM-triggered IgE cross-reactive antibodies were found to be functional as they mediated immediate hypersensitivity responses in skin testing. Finally, we demonstrated that HDM sensitization in either B cells or FcγRIII alpha-chain deficient mice indicated that the allergen driven cell-mediated larval killing is not antibody-dependent. Taken together, our data suggest that aeroallergen sensitization drives helminth reactive antibodies through molecular and structural similarity between HDM and Ascaris antigens suggesting that cross-reactive immune responses help drive allergic inflammation.


Asunto(s)
Polvo/inmunología , Hipersensibilidad/inmunología , Pyroglyphidae/inmunología , Animales , Antígenos Dermatofagoides/inmunología , Proteínas del Helminto/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Ratones , Proteómica
4.
J Clin Invest ; 129(9): 3686-3701, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31380805

RESUMEN

This study investigates the relationship between helminth infection and allergic sensitization by assessing the influence of preexisting allergy on the outcome of helminth infections, rather than the more traditional approach in which the helminth infection precedes the onset of allergy. Here we used a murine model of house dust mite-induced (HDM-induced) allergic inflammation followed by Ascaris infection to demonstrate that allergic sensitization drives an eosinophil-rich pulmonary type 2 immune response (Th2 cells, M2 macrophages, type 2 innate lymphoid cells, IL-33, IL-4, IL-13, and mucus) that directly hinders larval development and reduces markedly the parasite burden in the lungs. This effect is dependent on the presence of eosinophils, as eosinophil-deficient mice were unable to limit parasite development or numbers. In vivo administration of neutralizing antibodies against CD4 prior to HDM sensitization significantly reduced eosinophils in the lungs, resulting in the reversal of the HDM-induced Ascaris larval killing. Our data suggest that HDM allergic sensitization drives a response that mimics a primary Ascaris infection, such that CD4+ Th2-mediated eosinophil-dependent helminth larval killing in the lung tissue occurs. This study provides insight into the mechanisms underlying tissue-specific responses that drive a protective response against the early stages of the helminths prior to their establishing long-lasting infections in the host.


Asunto(s)
Presentación de Antígeno , Ascariasis/inmunología , Eosinófilos/inmunología , Hipersensibilidad/inmunología , Pulmón/inmunología , Pulmón/parasitología , Alérgenos/inmunología , Animales , Antígenos Dermatofagoides/inmunología , Ascaris , Asma/inmunología , Linfocitos T CD4-Positivos/inmunología , Eosinófilos/parasitología , Femenino , Inmunidad Innata , Inflamación , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Pyroglyphidae , Porcinos , Células Th2/inmunología
5.
J Pathol ; 248(1): 16-29, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30536905

RESUMEN

Fibroproliferative diseases affect a significant proportion of the world's population. Despite this, core mechanisms driving organ fibrosis of diverse etiologies remain ill defined. Recent studies suggest that integrin-alpha V serves as a master driver of fibrosis in multiple organs. Although diverse mechanisms contribute to the progression of fibrosis, TGF-ß and IL-13 have emerged as central mediators of fibrosis during type 1/type 17, and type 2 polarized inflammatory responses, respectively. To investigate if integrin-alpha V interactions or signaling is critical to the development of type 2 fibrosis, we analyzed fibroblast-specific integrin-alpha V knockout mice in three type 2-driven inflammatory disease models. While we confirmed a role for integrin-alpha V in type 17-associated fibrosis, integrin-alpha V was not critical to the development of type 2-driven fibrosis. Additionally, our studies support a novel mechanism through which fibroblasts, via integrin-alpha V expression, are capable of regulating immune polarization. We show that when integrin-alpha V is deleted on fibroblasts, initiation of type 17 inflammation is inhibited leading to a deregulation of type 2 inflammation. This mechanism is most evident in a model of severe asthma, which is characterized by a mixed type 2/type 17 inflammatory response. Together, these findings suggest dual targeting of integrin-alpha V and type 2 pathways may be needed to ameliorate fibrosis and prevent rebound of opposing pro-fibrotic and inflammatory mechanisms. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Fibroblastos/metabolismo , Inflamación/metabolismo , Integrina alfa5/fisiología , Animales , Asma/metabolismo , Asma/prevención & control , Modelos Animales de Enfermedad , Femenino , Fibrosis , Eliminación de Gen , Inflamación/patología , Integrina alfa5/genética , Interleucina-13/antagonistas & inhibidores , Interleucina-13/inmunología , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Masculino , Ratones Noqueados , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/prevención & control
6.
Oncotarget ; 8(62): 105284-105298, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29285251

RESUMEN

The abnormal hypoglycosylated form of the epithelial mucin MUC1 is over-expressed in chronic inflammation and on human adenocarcinomas, suggesting its potential role in inflammation-driven tumorigenesis. The presence of human MUC1 aggravates colonic inflammation and increases tumor initiation and progression in an in vivo AOM/DSS mouse model of colitis-associated cancer (CAC). High expression levels of pro-inflammatory cytokines, including TNF-α and IL-6, were found in MUC1+ inflamed colon tissues. Exogenous TNF-α promoted the transcriptional activity of MUC1 as well as over-expression of its hypoglycosylated form in intestinal epithelial cells (IECs). In turn, hypoglycosylated MUC1 in IECs associated with p65 and up-regulated the expression of NF-κB-target genes encoding pro-inflammatory cytokines. Intestinal chronic inflammation also increased the expression of histone methyltransferase Enhancer of Zeste protein-2 (EzH2) and its interaction with cytokine promoters. Consequently, EzH2 was a positive regulator of MUC1 and p65-mediated IL-6 and TNF-α gene expression, and this function was not dependent on its canonical histone H3K27 methyltransferase activity. Our findings provide a mechanistic basis for already known tumorigenic role of the hypoglycosylated MUC1 in CAC, involving a transcriptional positive feedback loop of pro-inflammatory cytokines.

7.
Sci Transl Med ; 9(396)2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28659437

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is now the most common progressive liver disease in developed countries and is the second leading indication for liver transplantation due to the extensive fibrosis it causes. NAFLD progression is thought to be tied to chronic low-level type 1 inflammation originating in the adipose tissue during obesity; however, the specific immunological mechanisms regulating the progression of NAFLD-associated fibrosis in the liver are unclear. To investigate the immunopathogenesis of NAFLD more completely, we investigated adipose dysfunction, nonalcoholic steatohepatitis (NASH), and fibrosis in mice that develop polarized type 1 or type 2 immune responses. Unexpectedly, obese interleukin-10 (IL-10)/IL-4-deficient mice (type 1-polarized) were highly resistant to NASH. This protection was associated with an increased hepatic interferon-γ (IFN-γ) signature. Conversely, IFN-γ-deficient mice progressed rapidly to NASH with evidence of fibrosis dependent on transforming growth factor-ß (TGF-ß) and IL-13 signaling. Unlike increasing type 1 inflammation and the marked loss of eosinophils seen in expanding adipose tissue, progression of NASH was associated with increasing eosinophilic type 2 liver inflammation in mice and human patient biopsies. Finally, simultaneous inhibition of TGF-ß and IL-13 signaling attenuated the fibrotic machinery more completely than TGF-ß alone in NAFLD-associated fibrosis. Thus, although type 2 immunity maintains healthy metabolic signaling in adipose tissues, it exacerbates the progression of NAFLD collaboratively with TGF-ß in the liver.


Asunto(s)
Progresión de la Enfermedad , Inmunidad , Enfermedades Metabólicas/inmunología , Enfermedades Metabólicas/prevención & control , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Factor de Crecimiento Transformador beta/metabolismo , Tejido Adiposo/patología , Animales , Dieta Alta en Grasa , Eosinófilos/patología , Humanos , Inflamación/patología , Interferón gamma/deficiencia , Interferón gamma/metabolismo , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/patología
8.
Nat Immunol ; 17(5): 538-44, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27043413

RESUMEN

Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103(+) dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung.


Asunto(s)
Quitinasas/inmunología , Tracto Gastrointestinal/inmunología , Inmunidad/inmunología , Infecciones por Strongylida/inmunología , Animales , Quitinasas/genética , Quitinasas/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/inmunología , Canales de Cloruro/metabolismo , Citometría de Flujo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/parasitología , Expresión Génica/inmunología , Hormonas Ectópicas/genética , Hormonas Ectópicas/inmunología , Hormonas Ectópicas/metabolismo , Interacciones Huésped-Parásitos/inmunología , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Inmunidad/genética , Péptidos y Proteínas de Señalización Intercelular , Interleucina-13/genética , Interleucina-13/inmunología , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/inmunología , Lectinas/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Nematospiroides dubius/inmunología , Nematospiroides dubius/fisiología , Nippostrongylus/inmunología , Nippostrongylus/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones por Strongylida/metabolismo , Infecciones por Strongylida/parasitología , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/inmunología , beta-N-Acetilhexosaminidasas/metabolismo
9.
Sci Transl Med ; 7(301): 301ra129, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26290411

RESUMEN

Increasing evidence suggests that asthma is a heterogeneous disorder regulated by distinct molecular mechanisms. In a cross-sectional study of asthmatics of varying severity (n = 51), endobronchial tissue gene expression analysis revealed three major patient clusters: TH2-high, TH17-high, and TH2/17-low. TH2-high and TH17-high patterns were mutually exclusive in individual patient samples, and their gene signatures were inversely correlated and differentially regulated by interleukin-13 (IL-13) and IL-17A. To understand this dichotomous pattern of T helper 2 (TH2) and TH17 signatures, we investigated the potential of type 2 cytokine suppression in promoting TH17 responses in a preclinical model of allergen-induced asthma. Neutralization of IL-4 and/or IL-13 resulted in increased TH17 cells and neutrophilic inflammation in the lung. However, neutralization of IL-13 and IL-17 protected mice from eosinophilia, mucus hyperplasia, and airway hyperreactivity and abolished the neutrophilic inflammation, suggesting that combination therapies targeting both pathways may maximize therapeutic efficacy across a patient population comprising both TH2 and TH17 endotypes.


Asunto(s)
Asma/inmunología , Asma/metabolismo , Células Th17/metabolismo , Células Th2/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Interleucina-13/metabolismo , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos BALB C , Transducción de Señal
10.
PLoS One ; 8(12): e83120, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376648

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and life threatening disease with median survival of 2.5-3 years. The IPF lung is characterized by abnormal lung remodeling, epithelial cell hyperplasia, myofibroblast foci formation, and extracellular matrix deposition. Analysis of gene expression microarray data revealed that cartilage oligomeric matrix protein (COMP), a non-collagenous extracellular matrix protein is among the most significantly up-regulated genes (Fold change 13, p-value <0.05) in IPF lungs. This finding was confirmed at the mRNA level by nCounter® expression analysis in additional 115 IPF lungs and 154 control lungs as well as at the protein level by western blot analysis. Immunohistochemical analysis revealed that COMP was expressed in dense fibrotic regions of IPF lungs and co-localized with vimentin and around pSMAD3 expressing cells. Stimulation of normal human lung fibroblasts with TGF-ß1 induced an increase in COMP mRNA and protein expression. Silencing COMP in normal human lung fibroblasts significantly inhibited cell proliferation and negatively impacted the effects of TGF-ß1 on COL1A1 and PAI1. COMP protein concentration measured by ELISA assay was significantly increased in serum of IPF patients compared to controls. Analysis of serum COMP concentrations in 23 patients who had prospective blood draws revealed that COMP levels increased in a time dependent fashion and correlated with declines in force vital capacity (FVC). Taken together, our results should encourage more research into the potential use of COMP as a biomarker for disease activity and TGF-ß1 activity in patients with IPF. Hence, studies that explore modalities that affect COMP expression, alleviate extracellular matrix rigidity and lung restriction in IPF and interfere with the amplification of TGF-ß1 signaling should be persuaded.


Asunto(s)
Proteína de la Matriz Oligomérica del Cartílago/genética , Matriz Extracelular/genética , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , Pulmón/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Anciano , Proteína de la Matriz Oligomérica del Cartílago/antagonistas & inhibidores , Proteína de la Matriz Oligomérica del Cartílago/sangre , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/sangre , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Masculino , Persona de Mediana Edad , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteína smad3/genética , Proteína smad3/metabolismo , Vimentina/genética , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...