Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(34): 40700-40708, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37589680

RESUMEN

The bottleneck in the rapid development of tin-based perovskite solar cells (TPSCs) is the inherent chemical instability. Although this is being addressed continuously, the device performance has not improved further due to the use of PEDOT:PSS as the hole-transport material (HTM), which has poor long-term stability. Herein we have applied commercial ITO nanoparticles over ITO glass substrates and altered the surface chemistry of the ITO electrode via a simple two-step thermal annealing, followed by a UV-ozone treatment. These surface-modified ITO electrodes display promising interfacial characteristics, such as a suitable band alignment owing to significantly reduced surface carbon contamination, increased In-O bonding, and reduced oxygen vacancies, that enabled fabrication of an HTM-free TPSC device according to a two-step method. The fabricated device possessed an outstanding power conversion efficiency (PCE) of 9.7%, along with a superior long-term stability by retaining over 90% of the initial PCE upon shelf storage in a glovebox for a period of over 10000 h. The application of ITO nanoparticles led to effective interfacial passivation, whose impacts on the long-term durability were assessed using electrochemical impedance spectroscopy, time-resolved photoluminescence decay profiles, and femtosecond transient absorption spectroscopy techniques.

2.
J Phys Chem Lett ; 12(51): 12292-12299, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34931843

RESUMEN

The dynamics of exciton and free-carrier relaxation of low-dimensional tin iodide perovskites, BA2FAn-1SnnI3n+1, where n = 1 (N1), 2 (N2), 5 (N5), and 10 (N10), were investigated with femtosecond transient absorption spectra (TAS). The absorption and photoluminescence spectra of N1 and N2 show exciton characteristics due to quantum confinement, whereas N5 and N10 display a free-carrier nature, the same as for bulk three-dimensional (3D) films. The TAS profiles were fitted according to a global kinetic model with three time coefficients representing the interactions of biexcitons, trions, and excitons for N1 and N2 and hot carriers, cold carriers, and shallow trap carriers for N5 and N10. The carrier relaxation dynamics of N5 and N10 were similar to those of 3D FASnI3 except for the absence of surface recombination in the deep-trap states due to passivation of the grain surfaces by the long alkyl chain for these quasi-2D samples (N5/N10 vs 3D).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...