Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Exp Pharmacol Physiol ; 34(10): 1020-8, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17714089

RESUMEN

1. In atrium and ventricle from failing and non-failing human hearts, activation of beta(1)- or beta(2)-adrenoceptors causes increases in contractile force, hastening of relaxation, protein kinase A-catalysed phosphorylation of proteins implicated in the hastening of relaxation, phospholamban, troponin I and C-protein, consistent with coupling of both beta(1)- and beta(2)-adrenoceptors to stimulatory G(salpha)-protein but not inhibitory G(ialpha)-protein. 2. Two 'affinity states', namely beta(1H) and beta(1L), of the beta(1)-adrenoceptor exist. In human heart, noradrenaline elicits powerful increases in contractile force and hastening of relaxation. These effects are blocked with high affinity by beta-adenoceptor antagonists, including propranolol, (-)-pindolol, (-)-CGP 12177 and carvedilol. Some beta-blockers, typified by (-)-pindolol and (-)-CGP 12177, not only block the receptor, but also activate it, albeit at much higher concentrations (approximately 2 log units) than those required to antagonize the effects of catecholamines. In human heart, both (-)-CGP 12177 and (-)-pindolol increase contractile force and hasten relaxation. However, the involvement of the beta(1)-adrenoceptor was not immediately obvious because (-)-pindolol- and (-)-CGP 12177-evoked responses were relatively resistant to blockade by (-)-propranolol. Abrogation of cardiostimulant effects of (-)-CGP 12177 in beta(1)-/beta(2)-adrenoceptor double-knockout mice, but not beta(2)-adrenoceptor-knockout mice, revealed an obligatory role of the beta(1)-adrenoceptor. On the basis of these results, two 'affinity states' have been designated, the beta(1H)- and beta(1L)-adrenoceptor, where the beta(1H)-adrenoceptor is activated by noradrenaline and blocked with high affinity by beta-blockers and the beta(1L)-adrenoceptor is activated by drugs such as (-)-CGP 12177 and (-)-pindolol and blocked with low affinity by beta-blockers such as (-)-propranolol. The beta(1H)- and beta(1L)-adrenoceptor states are consistent with high- and low-affinity binding sites for (-)-[(3)H]-CGP 12177 radioligand binding found in cardiac muscle and recombinant beta(1)-adrenoceptors. 3. There are two common polymorphic locations of the beta(1)-adrenoceptor, at amino acids 49 (Ser/Gly) and 389 (Arg/Gly). Their existence has raised several questions, including their role in determining the effectiveness of heart failure treatment with beta-blockers. We have investigated the effect of long-term maximally tolerated carvedilol administration (> 1 year) on left ventricular ejection fraction (LVEF) in patients with non-ischaemic cardiomyopathy (mean left ventricular ejection fraction 23 +/- 7%; n = 135 patients). The administration of carvedilol improved LVEF to 37 +/- 13% (P < 0.005); however, the improvement was variable, with 32% of patients showing pound 5% improvement. Upon segregation of patients into Arg389Gly-beta(1)-adrenoceptors, it was found that carvedilol caused a greater increase in left ventricular ejection faction in patients carrying the Arg389 allele with Arg389Arg > Arg389Gly > Gly389Gly.


Asunto(s)
Polimorfismo Genético/genética , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/fisiología , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/fisiología , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Corazón/efectos de los fármacos , Atrios Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Humanos , Miocardio/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/fisiología , Especificidad de la Especie
2.
Microbiology (Reading) ; 145 ( Pt 10): 2863-73, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10537208

RESUMEN

Twitching motility is a form of solid surface translocation which occurs in a wide range of bacteria and which is dependent on the presence of functional type IV fimbriae or pili. A detailed examination of twitching motility in Pseudomonas aeruginosa under optimal conditions in vitro was carried out. Under these conditions (at the smooth surface formed between semi-solid growth media and plastic or glass surfaces) twitching motility is extremely rapid, leading to an overall radial rate of colony expansion of 0.6 mm h(-1) or greater. The zones of colony expansion due to twitching motility are very thin and are best visualized by staining. These zones exhibit concentric rings in which there is a high density of microcolonies, which may reflect periods of expansion and consolidation/cell division. Video microscopic analysis showed that twitching motility involves the initial formation of large projections or rafts of aggregated cells which move away from the colony edge. Behind the rafts, individual cells move rapidly up and down trails which thin and branch out, ultimately forming a fine lattice-like network of cells. The bacteria in the lattice network then appear to settle and divide to fill out the colonized space. Our observations redefine twitching motility as a rapid, highly organized mechanism of bacterial translocation by which P. aeruginosa can disperse itself over large areas to colonize new territories. It is also now clear, both morphologically and genetically, that twitching motility and social gliding motility, such as occurs in Myxococcus xanthus, are essentially the same process.


Asunto(s)
Fimbrias Bacterianas/fisiología , Pseudomonas aeruginosa/fisiología , Microscopía por Video , Movimiento , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/ultraestructura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...