Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int Microbiol ; 27(5): 1541-1556, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38472714

RESUMEN

Cyamopsis tetragonoloba (L.) Taub. (guar) is a commercially important crop known for its galactomannan content in seeds. Drought stress is a significant global concern that compromises the productivity of major legumes including guar. The endophytic microbes associated with plants play a significant role in enhancing plant growth and modulating the impact of abiotic stress(s). The present study involved the isolation of 73 endophytic bacteria from the guar seeds of drought-tolerant (RGC-1002 and RGC-1066) and sensitive (Sarada and Varsha) varieties. Based on multiple PGP attributes and drought tolerance, at 50% PEG6000 w/v, 11 efficient isolates were selected and identified through 16S rRNA gene sequencing. Isolates belonging to ten different species of bacilli including Cytobacillus oceanisediminis, Mesobacillus fermenti, Peribacillus simplex from sensitive and Bacillus zanthoxyli, B. safensis, B. velezensis, B. altitudinis, B. licheniformis, B. tequilensis, and B. paralicheniformis isolated from tolerant varieties. A greenhouse experiment with a drought-sensitive guar variety demonstrated that inoculation of selected isolates showed comparatively better plant growth, higher relative water content (RWC), decreased carbon isotope discrimination ratio (Δ13C), increased chlorophyll, carotenoids, anthocyanin, and proline content, decreased malondialdehyde (MDA) and modulated defense enzymes as compared to their uninoculated controls. Tolerant variety isolates B. tequilensis NBRI14G and B. safensis NBRI10R showed the most promising results in improving plant growth and also drought stress tolerance in guar plants. This study represents for the first time that seed endophytic bacterial strains from guar can be utilized to develop the formulation for improving the productivity of guar under drought-stress conditions.


Asunto(s)
Cyamopsis , Sequías , Endófitos , Endófitos/aislamiento & purificación , Endófitos/genética , Endófitos/clasificación , Endófitos/fisiología , Endófitos/metabolismo , ARN Ribosómico 16S/genética , Bacillus/aislamiento & purificación , Bacillus/genética , Bacillus/fisiología , Bacillus/clasificación , Bacillus/metabolismo , Semillas/microbiología , Semillas/crecimiento & desarrollo , Estrés Fisiológico , Desarrollo de la Planta , Filogenia , Resistencia a la Sequía
2.
Int Microbiol ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37979101

RESUMEN

Arsenic (As) contamination is a major problem affecting soil and groundwater in India, harming agricultural crops and human health. Plant growth-promoting rhizobacteria (PGPR) have emerged as promising agents for reducing As toxicity in plants. This study aimed to isolate and characterize As-tolerant PGPR from rice field soils with varying As levels in five districts of West Bengal, India. A total of 663 bacterial isolates were obtained from the different soil samples, and 10 bacterial strains were selected based on their arsenite (As-III) and arsenate (As-V) tolerant ability and multiple PGP traits, including phosphate solubilization, production of siderophore, indole acetic acid, biofilm formation, alginate, and exopolysaccharide. These isolates were identified by 16S rRNA gene sequencing analysis as Staphylococcus sp. (4), Niallia sp. (2), Priestia sp. (1), Bacillus sp. (1), Pseudomonas sp. (1), and Citricoccus sp. (1). Among the selected bacterial strains, Priestia flexa NBRI4As1 and Pseudomonas chengduensis NBRI12As1 demonstrated significant improvement in rice growth by alleviating arsenic stress under greenhouse conditions. Both strains were also able to modulate photosynthetic pigments, soluble sugar content, proline concentration, and defense enzyme activity. Reduction in As-V accumulation inoculated with NBRI4As1 was recorded highest by 53.02% and 31.48%, while As-III by NBRI12As1 38.84% and 35.98% in the roots and shoots of rice plants, respectively. Overall, this study can lead to developing efficient As-tolerant bacterial strains-based bioinoculant application packages for arsenic stress management in rice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA