Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(7): 1677-1689, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38896052

RESUMEN

Aberrant activation of GLI transcription factors has been implicated in the pathogenesis of different tumor types including pancreatic ductal adenocarcinoma. However, the mechanistic link with established drivers of this disease remains in part elusive. In this study, using a new genetically engineered mouse model overexpressing constitutively active mouse form of GLI2 and a combination of genome-wide assays, we provide evidence of a novel mechanism underlying the interplay between KRAS, a major driver of pancreatic ductal adenocarcinoma development, and GLI2 to control oncogenic gene expression. These mice, also expressing KrasG12D, show significantly reduced median survival rate and accelerated tumorigenesis compared with the KrasG12D only expressing mice. Analysis of the mechanism using RNA sequencing demonstrate higher levels of GLI2 targets, particularly tumor growth-promoting genes, including Ccnd1, N-Myc, and Bcl2, in KrasG12D mutant cells. Furthermore, chromatin immunoprecipitation sequencing studies showed that in these cells KrasG12D increases the levels of trimethylation of lysine 4 of the histone 3 (H3K4me3) at the promoter of GLI2 targets without affecting significantly the levels of other major active chromatin marks. Importantly, Gli2 knockdown reduces H3K4me3 enrichment and gene expression induced by mutant Kras. In summary, we demonstrate that Gli2 plays a significant role in pancreatic carcinogenesis by acting as a downstream effector of KrasG12D to control gene expression.


Asunto(s)
Carcinoma Ductal Pancreático , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Proteína Gli2 con Dedos de Zinc , Animales , Humanos , Ratones , Carcinogénesis , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Histonas/metabolismo , Histonas/genética , Ratones Transgénicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transcripción Genética , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli2 con Dedos de Zinc/metabolismo
2.
Biochem J ; 480(15): 1199-1216, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37477952

RESUMEN

Aberrant activation of the Hedgehog (Hh) signaling pathway, through which the GLI family of transcription factors (TF) is stimulated, is commonly observed in cancer cells. One well-established mechanism of this increased activity is through the inactivation of Suppressor of Fused (SUFU), a negative regulator of the Hh pathway. Relief from negative regulation by SUFU facilitates GLI activity and induction of target gene expression. Here, we demonstrate a novel role for SUFU as a promoter of GLI activity in pancreatic ductal adenocarcinoma (PDAC). In non-ciliated PDAC cells unresponsive to Smoothened agonism, SUFU overexpression increases GLI transcriptional activity. Conversely, knockdown (KD) of SUFU reduces the activity of GLI in PDAC cells. Through array PCR analysis of GLI target genes, we identified B-cell lymphoma 2 (BCL2) among the top candidates down-regulated by SUFU KD. We demonstrate that SUFU KD results in reduced PDAC cell viability, and overexpression of BCL2 partially rescues the effect of reduced cell viability by SUFU KD. Further analysis using as a model GLI1, a major TF activator of the GLI family in PDAC cells, shows the interaction of SUFU and GLI1 in the nucleus through previously characterized domains. Chromatin immunoprecipitation (ChIP) assay shows the binding of both SUFU and GLI1 at the promoter of BCL2 in PDAC cells. Finally, we demonstrate that SUFU promotes GLI1 activity without affecting its protein stability. Through our findings, we propose a novel role of SUFU as a positive regulator of GLI1 in PDAC, adding a new mechanism of Hh/GLI signaling pathway regulation in cancer cells.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Represoras , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-bcl-2 , Neoplasias Pancreáticas
3.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194924, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36842643

RESUMEN

Upon accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER), the Unfolded Protein Response (UPR) is triggered to restore ER homeostasis. The induction of stress genes is a sine qua non condition for effective adaptive UPR. Although this requirement has been extensively described, the mechanisms underlying this process remain in part uncharacterized. Here, we show that p97/VCP, an AAA+ ATPase known to contribute to ER stress-induced gene expression, regulates the transcription factor GLI1, a primary effector of Hedgehog (Hh) signaling. Under basal (non-ER stress) conditions, GLI1 is repressed by a p97/VCP-HDAC1 complex while upon ER stress GLI1 is induced through a mechanism requiring both USF2 binding and increase histone acetylation at its promoter. Interestingly, the induction of GLI1 was independent of ligand-regulated Hh signaling. Further analysis showed that GLI1 cooperates with ATF6f to induce promoter activity and expression of XBP1, a key transcription factor driving UPR. Overall, our work demonstrates a novel role for GLI1 in the regulation of ER stress gene expression and defines the interplay between p97/VCP, HDAC1 and USF2 as essential players in this process.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Hedgehog , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Biol Chem ; 298(12): 102646, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309090

RESUMEN

Iron (Fe) sequestration is one of the most important strategies of the host to control the growth and survival of invading pathogens. Ferritin (Ft) plays a pivotal role in the sequestration mechanism of mammalian hosts by storing Fe. Recent evidence suggests that poly(rC)-binding proteins (PCBPs) act as chaperones for loading Fe into Ft. Incidentally, modulation of host PCBPs in respect to storing Fe in Ft during any infection remains unexplored. Among PCBPs, PCBP1 and PCBP2 are present in every cell type and involved in interacting with Ft for Fe loading. Leishmania donovani (LD) resides within macrophages during the mammalian stage of infection, causing life-threatening visceral leishmaniasis. Here, we reveal the ability of LD to cleave PCBP1 and PCBP2 in host monocytes/macrophages. LD cleaves PCBP1-FLAG into two fragments and PCBP2-FLAG into multiple fragments, thus affecting their interactions with Ft and resulting in decreased Fe loading into Ft. LD-derived culture supernatant or exosome-enriched fractions are also able to cleave PCBPs, suggesting involvement of a secreted protease of the parasite. Using an immune-depletion experiment and transgenic mutants, we confirmed the involvement of zinc-metalloprotease GP63 in cleaving PCBPs. We further revealed that by cleaving host PCBPs, Leishmania could inhibit Fe loading into Ft to accumulate available Fe for higher intracellular growth. This is the first report of a novel strategy adopted by a mammalian pathogen to interfere with Fe sequestration into Ft by cleaving chaperones for its survival advantage within the host.


Asunto(s)
Ferritinas , Hierro , Leishmania donovani , Leishmaniasis Visceral , Chaperonas Moleculares , Animales , Ferritinas/metabolismo , Hierro/metabolismo , Leishmania donovani/metabolismo , Macrófagos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Unión al ADN/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA