Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 21: 71-74, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30338276

RESUMEN

Jatropha curcas L. or the physic nut is a monoecious shrub belonging to the Euphorbiaceae family. The plant is an ideal feedstock for biodiesel production; oil-rich seed (37-42%), has a broad range of growth habitat such as arid, semi-arid and tropical and a relatively feasible process for conversion of crude oil into biodiesel. The major constraint affecting the success of large-scale J. curcas plantation is seed yield inconsistency. Numerous research projects conducted on J. curcas with integrated genetic, genomic and transcriptomic approaches have been applied on the leaf, apical meristem, flower, root and fruit tissues. However, to date, no genomics data of J. curcas shoot system are publicly available, despite its importance in understanding flowering, fruiting and seed set qualities targeted for yield improvement. Here, we present eighteen sets of shoot and inflorescence transcriptomes generated from J. curcas plants with contrasting yields. Raw reads of the RNA-seq data are found in NCBI׳s Sequence Read Archive (SRA) database with the accession number SRP090662 (https://www.ncbi.nlm.nih.gov/sra/?term=SRP090662). This transcriptomic data could be integrated with the present genomic resources for in depth understanding of J. curcas reproductive system.

2.
PLoS One ; 13(9): e0203441, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30240391

RESUMEN

Jatropha curcas is an oil-rich seed crop with huge potentials for bioenergy production. The inflorescence carries a number of processes that are likely to affect the overall yield potentials; floral development, male-to-female flower ratio, floral abscission and fruit set. In this study, a weighted gene co-expression network analysis which integrates the transcriptome, physical and simple sugar data of J. curcas inflorescence was performed and nine modules were identified by means of hierarchical clustering. Among them, four modules (green4, antiquewhite2, brown2 and lightskyblue4) showed significant correlation to yield factors at p≤0.01. The four modules are categorized into two clusters; cluster 1 of green4 and antiquewhite2 modules correspond to number of flowers/inflorescence, total seed weight/plant, number of seeds/plant, and number of fruits/plant, whereas cluster 2 of brown2 and lightskyblue4 modules correspond to glucose and fructose. Descriptive characterizations of cluster 1 show putative involvement in gibberellin signaling and responses, whereas cluster 2 may have been involved in sugar signaling, signal transductions and regulation of flowerings. Our findings present a list of hub genes for J. curcas yield improvement and reproductive biology enhancement strategies.


Asunto(s)
Flores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/fisiología , Jatropha , Transducción de Señal/fisiología , Flores/genética , Flores/metabolismo , Jatropha/genética , Jatropha/metabolismo
3.
Sci Rep ; 8(1): 9211, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907786

RESUMEN

The plant shoot system consists of reproductive organs such as inflorescences, buds and fruits, and the vegetative leaves and stems. In this study, the reproductive part of the Jatropha curcas shoot system, which includes the aerial shoots, shoots bearing the inflorescence and inflorescence were investigated in regard to gene-to-gene interactions underpinning yield-related biological processes. An RNA-seq based sequencing of shoot tissues performed on an Illumina HiSeq. 2500 platform generated 18 transcriptomes. Using the reference genome-based mapping approach, a total of 64 361 genes was identified in all samples and the data was annotated against the non-redundant database by the BLAST2GO Pro. Suite. After removing the outlier genes and samples, a total of 12 734 genes across 17 samples were subjected to gene co-expression network construction using petal, an R library. A gene co-expression network model built with scale-free and small-world properties extracted four vicinity networks (VNs) with putative involvement in yield-related biological processes as follow; heat stress tolerance, floral and shoot meristem differentiation, biosynthesis of chlorophyll molecules and laticifers, cell wall metabolism and epigenetic regulations. Our VNs revealed putative key players that could be adapted in breeding strategies for J. curcas shoot system improvements.


Asunto(s)
Epigénesis Genética/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Redes Reguladoras de Genes/fisiología , Jatropha , Brotes de la Planta , Jatropha/genética , Jatropha/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
4.
Genom Data ; 13: 11-14, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28626637

RESUMEN

Shoot and inflorescence are central physiological and developmental tissues of plants. Flowering is one of the most important agronomic traits for improvement of crop yield. To analyze the vegetative to reproductive tissue transition in Jatropha curcas, gene expression profiles were generated from shoot and inflorescence tissues. RNA isolated from both tissues was sequenced using the Ilumina HiSeq 2500 platform. Differential gene expression analysis identified key biological processes associated with vegetative to reproductive tissue transition. The present data for J. curcas may inform the design of breeding strategies particularly with respect to reproductive tissue transition. The raw data of this study has been deposited in the NCBI's Sequence Read Archive (SRA) database with the accession number SRP090662.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...