Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 41(11): 1593-1605, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36797491

RESUMEN

Identification of optimal target antigens that distinguish cancer cells from normal surrounding tissue cells remains a key challenge in chimeric antigen receptor (CAR) cell therapy for tumors with intratumoral heterogeneity. In this study, we dissected tissue complexity to the level of individual cells through the construction of a single-cell expression atlas that integrates ~1.4 million tumor, tumor-infiltrating normal and reference normal cells from 412 tumors and 12 normal organs. We used a two-step screening method using random forest and convolutional neural networks to select gene pairs that contribute most to discrimination between individual malignant and normal cells. Tumor coverage and specificity are evaluated for the AND, OR and NOT logic gates based on the combinatorial expression pattern of the pairing genes across individual single cells. Single-cell transcriptome-coupled epitope profiling validates the AND, OR and NOT switch targets identified in ovarian cancer and colorectal cancer.


Asunto(s)
Neoplasias Ováricas , Linfocitos T , Femenino , Humanos , Inmunoterapia Adoptiva/métodos , Antígenos de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...