Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 917, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158744

RESUMEN

The phenomenon of compartmentalization is one of the key traits of life. Biological membranes and histohematic barriers protect the internal environment of the cell and organism from endogenous and exogenous impacts. It is known that the integrity of these barriers decreases with age due to the loss of homeostasis, including age-related gene expression profile changes and the abnormal folding/assembly, crosslinking, and cleavage of barrier-forming macromolecules in addition to morphological changes in cells and tissues. The critical molecular and cellular mechanisms involved in physiological barrier integrity maintenance and aging-associated changes in their functioning are reviewed on different levels: molecular, organelle, cellular, tissue (histohematic, epithelial, and endothelial barriers), and organ one (skin). Biogerontology, which studies physiological barriers in the aspect of age, is still in its infancy; data are being accumulated, but there is no talk of the synthesis of complex theories yet. This paper mainly presents the mechanisms that will become targets of anti-aging therapy only in the future, possibly: pharmacological, cellular, and gene therapies, including potential geroprotectors, hormetins, senomorphic drugs, and senolytics.


Asunto(s)
Envejecimiento , Humanos , Envejecimiento/fisiología , Envejecimiento/genética , Animales , Homeostasis , Piel/metabolismo , Piel/patología
2.
Vaccines (Basel) ; 11(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37897003

RESUMEN

mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.

3.
Micromachines (Basel) ; 10(6)2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31146472

RESUMEN

Formulation of multifunctional biopolymer-based scaffolds is one of the major focuses in modern tissue engineering and regenerative medicine. Besides proper mechanical/chemical properties, an ideal scaffold should: (i) possess a well-tuned porous internal structure for cell seeding/growth and (ii) host bioactive molecules to be protected against biodegradation and presented to cells when required. Alginate hydrogels were extensively developed to serve as scaffolds, and recent advances in the hydrogel formulation demonstrate their applicability as "ideal" soft scaffolds. This review focuses on advanced porous alginate scaffolds (PAS) fabricated using hard templating on vaterite CaCO3 crystals. These novel tailor-made soft structures can be prepared at physiologically relevant conditions offering a high level of control over their internal structure and high performance for loading/release of bioactive macromolecules. The novel approach to assemble PAS is compared with traditional methods used for fabrication of porous alginate hydrogels. Finally, future perspectives and applications of PAS for advanced cell culture, tissue engineering, and drug testing are discussed.

4.
ACS Appl Mater Interfaces ; 7(38): 21315-25, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26348458

RESUMEN

Biocompatibility and high loading capacity of mesoporous CaCO3 vaterite crystals give an option to utilize the polycrystals for a wide range of (bio)applications. Formation and transformations of calcium carbonate polymorphs have been studied for decades, aimed at both basic and applied research interests. Here, composite multilayer-coated calcium carbonate polycrystals containing Fe3O4 magnetite nanoparticles and model protein lysozyme are fabricated. The structure of the composite polycrystals and vaterite → calcite recrystallization kinetics are studied. The recrystallization results in release of both loaded protein and Fe3O4 nanoparticles (magnetic manipulation is thus lost). Fe3O4 nanoparticles enhance the recrystallization that can be induced by reduction of the local pH with citric acid and reduction of the polycrystal crystallinity. Oppositely, the layer-by-layer assembled poly(allylamine hydrochloride)/poly(sodium styrenesulfonate) polyelectrolyte coating significantly inhibits the vaterite → calcite recrystallization (from hours to days) most likely due to suppression of the ion exchange giving an option to easily tune the release kinetics for a wide time scale, for example, for prolonged release. Moreover, the recrystallization of the coated crystals results in formulation of multilayer capsules keeping the feature of external manipulation. This study can help to design multifunctional microstructures with tailor-made characteristics for loading and controlled release as well as for external manipulation.


Asunto(s)
Carbonato de Calcio/química , Óxido Ferrosoférrico/química , Cristalografía , Electrólitos/química , Fluorescencia , Microscopía Electrónica de Rastreo , Muramidasa/química , Difracción de Rayos X
5.
Langmuir ; 31(39): 10813-21, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26345198

RESUMEN

Development of tailor-made porous polymer scaffolds acting as a temporary tissue-construct for cellular organization is of primary importance for tissue engineering applications. Control over the gel porosity is a critical issue due to the need for cells to proliferate and migrate and to ensure the transport of nutrition and metabolites. Gel loading with bioactive molecules is desired for target release of soluble signals to guide cell function. Calcium-alginate hydrogels are one of the most popular gels successfully utilized as polymer scaffolds. Here we propose a benchtop approach to design porous alginate gels by dispersion of CaCO3 vaterite crystals in sodium alginate followed by the crystal elimination. CaCO3 crystals play a triple role being (i) cross-linkers (a source of calcium ions to cross-link gel network), (ii) pore-makers (leaching of crystals retains the empty pores), and (iii) reservoirs with (bio)molecules (by molecule preloading into the crystals). Pore dimensions, interconnectivity, and density can be adjusted by choosing the size, concentration, and packing of the sacrificial CaCO3 crystals. An opportunity to load the pores with biomolecules was demonstrated using FITC-labeled dextrans of different molecular masses from 10 to 500 kDa. The dextrans were preloaded into CaCO3 vaterite crystals, and the subsequent crystal removal resulted in encapsulation of dextrans inside the pores of the gel. The dextran release rate from the gel pores depends on the equilibration of the gel structure as concluded by comparing dextran release kinetics during gelation (fast) and dextran diffusion into the performed gel (slower). Macromolecule binding to the gel is electrostatically driven as found for lysozyme and insulin. The application of porous gels as scaffolds potentially offering biomacromolecule encapsulation/release performance might be useful for alginate gel-based applications such as tissue engineering.


Asunto(s)
Alginatos/química , Geles , Carbonato de Calcio/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Microscopía Confocal , Microscopía Electrónica de Rastreo , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA