Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Histol Histopathol ; 28(11): 1411-25, 2013 11.
Artículo en Inglés | MEDLINE | ID: mdl-23771475

RESUMEN

From a histological and functional point of view, two types of adipose tissue can be identified. As opposed to the mainly unilocular white adipocytes, brown adipocytes possess plenty of small multilocular lipid droplets and dissipate energy as heat. Moreover, two distinct types of brown adipose cells exist. In vivo fate mapping experiments of brown adipose tissue (BAT) precursors suggest that classical brown adipocytes and skeletal myoblasts originate from a common mesenchymal, myogenic factor 5 (Myf5)-positive precursor cell. In addition to the classical brown adipocytes, thermogenic brown-like adipocytes (brite/beige cells) may appear within white adipose tissue (WAT) depots, sharing many of the morphological and functional features of brown adipocytes, but arising from a Myf5-negative lineage. In humans, the conversion of white fat cells into brite adipocytes could be a strategy to increase energy expenditure. The zinc finger transcription factor Prdm16 controls the bidirectional fate decision between brown adipocytes and myoblasts. Prdm16 determines the brown fat-like programme and thermogenesis in both brown and white adipose tissues. Moreover, the expression of this transcriptional regulator is strongly correlated with beige cell-selective genes. From a therapeutical point of view, the potential of inducing BAT or the transdifferentiation of WAT into beige cells by enhancing Prdm16 expression, as well as the identification of mechanisms of Prdm16 function and regulation represent potentially exciting new approaches for treatment or prevention of obesity and related diseases.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Transdiferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Obesidad/metabolismo , Factores de Transcripción/metabolismo , Adipocitos/citología , Tejido Adiposo Pardo/citología , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Linaje de la Célula , Humanos , Obesidad/fisiopatología , Termogénesis/fisiología
2.
Tissue Eng Part A ; 19(1-2): 188-98, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22897172

RESUMEN

Intestinal myofibroblasts secrete substances that control organogenesis and wound repair of the intestine. The myofibroblasts of the rat small intestine express reelin and the present work explores whether reelin regulates crypt-villus unit homeostasis using normal mice and mice with the reelin gene disrupted (reeler). The results reveal that mouse small intestine expresses reelin, its receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VldlR) and the reelin effector protein Disabled-1 (Dab1) and that reelin expression is restricted to myofibroblasts. The absence of reelin significantly reduces epithelial cell proliferation, migration, and apoptosis and the number of Paneth cells. These effects are observed during the suckling, weaning, and adult periods. The number of Goblet cells is increased in the 2-month-old reeler mice. The absence of reelin also expands the extracellular space of the adherens junctions and desmosomes without significantly affecting either the tight-junction structure or the epithelial paracellular permeability. In conclusion, this is the first in vivo work showing that the absence of reelin alters intestinal epithelium homeostasis.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Homeostasis/fisiología , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Miofibroblastos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Células Cultivadas , Mucosa Intestinal/citología , Intestino Delgado/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes Neurológicos , Receptores de LDL/metabolismo , Proteína Reelina
3.
Trends Cell Biol ; 19(4): 141-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19285866

RESUMEN

Both brown and white adipocytes were previously considered to be derived from the same precursor cell, despite being histologically and functionally different. However, a recent study shows that overexpression of the transcriptional regulator positive regulatory domain containing 16 (PRDM16) determines the development of brown adipocytes from a progenitor that expresses myoblast markers. Surprisingly, loss of PRDM16 from these precursors does not lead to white adipocyte differentiation. Thus, PRDM16 controls a bidirectional cell fate switch between skeletal myoblasts and brown adipocytes.


Asunto(s)
Adipocitos Marrones/fisiología , Adipocitos Blancos/fisiología , Transdiferenciación Celular , Proteínas de Unión al ADN/metabolismo , Mioblastos Esqueléticos/citología , Factores de Transcripción/metabolismo , Adipocitos Marrones/citología , Adipocitos Blancos/citología , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular , Humanos , Ratones , Proteína MioD/metabolismo , Mioblastos Esqueléticos/fisiología , Factores Reguladores Miogénicos/metabolismo , Miogenina/metabolismo , PPAR gamma/metabolismo
4.
Prog Histochem Cytochem ; 38(2): 155-272, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12756892

RESUMEN

In the present review we will summarise the current knowledge about the cells comprising the Diffuse Endocrine System (DES) in mammalian organs. We will describe the morphological, histochemical and functional traits of these cells in three major systems gastrointestinal, respiratory and prostatic. We will also focus on some aspects of their ontogeny and differentiation, as well as to their relevance in carcinogenesis, especially in neuroendocrine tumors. The first chapter describes the characteristics of DES cells and some of their specific biological and biochemical traits. The second chapter deals with DES in the gastrointestinal organs, with special reference to the new data on the differentiation mechanisms that leads to the appearance of endocrine cells from an undifferentiated stem cell. The third chapter is devoted to DES of the respiratory system and some aspects of its biological role, both, during development and adulthood. Neuroendocrine hyperplasia and neuroendocrine lung tumors are also addressed. Finally, the last chapter deals with the prostatic DES, discussing its probable functional role and its relevance in hormone-resistant prostatic carcinomas.


Asunto(s)
Neoplasias de las Glándulas Endocrinas/patología , Sistema Endocrino/fisiología , Animales , División Celular , Sistema Endocrino/embriología , Sistema Endocrino/crecimiento & desarrollo , Células Enteroendocrinas/fisiología , Humanos , Pulmón/fisiología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Masculino , Próstata/fisiología , Neoplasias de la Próstata/etiología , Neoplasias de la Próstata/patología , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA