Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(39): 12133-12139, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39306768

RESUMEN

We present the first microscopic model for the chirality-induced spin selectivity effect in electron-transfer, in which the internal degrees of freedom of the chiral bridge are explicitly included. By exactly solving this model on short chiral chains we demonstrate that a sizable spin polarization on the acceptor arises from the interplay of coherent and incoherent dynamics, with strong electron-electron correlations yielding many-body states on the bridge as crucial ingredients. Moreover, we include the coherent and incoherent dynamics induced by interactions with vibrational modes and show that they can play an important role in determining the long-time polarized state probed in experiments.

2.
Chem Sci ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39156928

RESUMEN

Depositing single paramagnetic molecules on surfaces for sensing and quantum computing applications requires subtle topological control. To overcome issues that are often encountered with sandwich metal complexes, we exploit here the low symmetry architecture and suitable vaporability of mixed-sandwich [FluTi(cot)], Flu = fluorenyl, cot = cyclooctatetraene, to drive submonolayer coverage and select an adsorption configuration that preserves the spin of molecules deposited on Au(111). Electron paramagnetic resonance spectroscopy and ab initio quantum computation evidence a d z 2 ground state that protects the spin from phonon-induced relaxation. Additionally, computed and measured spin coherence times exceed 10 µs despite the molecules being rich in hydrogen. A thorough submonolayer investigation by scanning tunneling microscopy, X-ray photoelectron and absorption spectrocopies and X-ray magnetic circular dichroism measurements supported by DFT calculations reveals that the most stable configuration, with the fluorenyl in contact with the metal surface, prevents titanium(iii) oxidation and spin delocalization to the surface. This is a necessary condition for single molecular spin qubit addressing on surfaces.

3.
J Mater Chem C Mater ; 12(27): 10029-10035, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39006148

RESUMEN

The chirality-induced spin selectivity (CISS) effect is the capability of chiral molecules to act as spin filters, i.e. to selectively sort flowing electrons based on their spin states. The application of this captivating phenomenon holds great promise in the realm of molecular spintronics, where the primary focus lies in advancing technologies based on chiral molecules to regulate the injection and coherence of spin-polarized currents. In this context, we conducted a study to explore the spin filtering capabilities of a monolayer of the thia-bridged triarylamine hetero[4]helicene radical cation chemisorbed on a metallic surface. Magnetic-conductive atomic force microscopy revealed efficient electron spin filtering at exceptionally low potentials. Furthermore, we constructed a spintronic device by incorporating a monolayer of these molecules in between two electrodes, obtaining an asymmetric magnetoresistance trend with signal inversion in accordance with the handedness of the enantiomer involved, indicative of the presence of the CISS effect. Our findings underscore the significance of thia[4]azahelicene organic radicals as promising candidates for the development of quantum information operations based on the CISS effect as a tool to control the molecular spin states.

4.
Nanoscale ; 16(30): 14378-14386, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38993100

RESUMEN

The decoration of technologically relevant surfaces, such as metal oxides, with Single-Molecule Magnets (SMMs) constitutes a persistent challenge for the integration of these molecular systems into novel technologies and, in particular, for the development of spintronic and quantum devices. We used UHV thermal sublimation to deposit tetrairon(III) propeller-shaped SMMs (Fe4) as a single layer on a TiO2 ultrathin film grown on Cu(001). The properties of the molecular deposit were studied using a multi-technique approach based on standard topographic and spectroscopic measurements, which demonstrated that molecules remain largely intact upon deposition. Ultralow temperature X-ray Absorption Spectroscopy (XAS) with linearly and circularly polarized light was further employed to evaluate both the molecular organization and the magnetic properties of the Fe4 monolayer. X-ray Natural Linear Dichroism (XNLD) and X-ray Magnetic Circular Dichroism (XMCD) showed that molecules in a monolayer display a preferential orientation and an open magnetic hysteresis with pronounced quantum tunnelling steps up to 900 mK. However, unexpected extra features in the XAS and XMCD spectra disclosed a minority fraction of altered molecules, suggesting that the TiO2 film may be chemically non-innocent. The observed persistence of SMM behaviour on a metal oxide thin film opens new possibilities for the development of SMM-based hybrid systems.

5.
Inorg Chem ; 63(33): 15460-15466, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38941532

RESUMEN

Both metalloporphyrins and heterometallic {Cr7Ni} rings are of significant research interest due to their proposed roles in quantum information processing devices. In this study, we present a series of complexes in which [Cr7NiF3(Etglu)(O2CtBu)15] (N-EtgluH5 = N-ethyl-d-glucamine) heterometallic rings are coordinated to metalloporphyrin linkers: the symmetric [M(TPyP)] for M = Cu2+, VO2+, and H2TPyP = 5,10,15,20-tetra(4-pyridyl)porphyrin; and the asymmetric [{VO}(TrPPyP)] for H2(TrPPyP) = 5,10,15-(triphenyl)-20-(4-pyridyl)porphyrin. The magnetic interactions present in these complexes are unraveled using the continuous wave (CW) electron paramagnetic resonance (EPR) technique. The nature of the coupling between the {Cr7Ni} rings and the central metalloporphyrin is assessed by numerical simulations of CW EPR spectra and determined to be on the order of 0.01 cm-1, larger than the dipolar ones and suitable for individual spin addressability in multiqubit architectures.

6.
Angew Chem Int Ed Engl ; 62(48): e202312936, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37812016

RESUMEN

In the development of two-qubit quantum gates, precise control over the intramolecular spin-spin interaction between molecular spin units plays a pivotal role. A weak but measurable exchange coupling is especially important for achieving selective spin addressability that allows controlled manipulation of the computational basis states |00⟩ |01⟩ |10⟩ |11⟩ by microwave pulses. Here, we report the synthesis and Electron Paramagnetic Resonance (EPR) study of a heterometallic meso-meso (m-m) singly-linked VIV O-CuII porphyrin dimer. X-band continuous wave EPR measurements in frozen solutions suggest a ferromagnetic exchange coupling of ca. 8 ⋅ 10-3  cm-1 . This estimation is supported by Density Functional Theory calculations, which also allow disentangling the ferro- and antiferromagnetic contributions to the exchange. Pulsed EPR experiments show that the dimer maintains relaxation times similar to the monometallic CuII porphyrins. The addressability of the two individual spins is made possible by the different g-tensors of VIV and CuII -ions, in contrast to homometallic dimers where tilting of the porphyrin planes plays a key role. Therefore, single-spin addressability in the heterometallic dimer can be maintained even with small tilting angles, as expected when deposited on surface, unlocking the full potential of molecular quantum gates for practical applications.

7.
Chemistry ; 29(69): e202301005, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37677125

RESUMEN

Over the past two decades, the chirality-induced spin selectivity (CISS) effect was reported in several experiments disclosing a unique connection between chirality and electron spin. Recent theoretical works highlighted time-resolved Electron Paramagnetic Resonance (trEPR) as a powerful tool to directly detect the spin polarization resulting from CISS. Here, we report a first attempt to detect CISS at the molecular level by linking the pyrene electron donor to the fullerene acceptor with chiral peptide bridges of different length and electric dipole moment. The dyads are investigated by an array of techniques, including cyclic voltammetry, steady-state and transient optical spectroscopies, and trEPR. Despite the promising energy alignment of the electronic levels, our multi-technique analysis reveals no evidence of electron transfer (ET), highlighting the challenges of spectroscopic detection of CISS. However, the analysis allows the formulation of guidelines for the design of chiral organic model systems suitable to directly probe CISS-polarized ET.

8.
ACS Nano ; 17(15): 15189-15198, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37493644

RESUMEN

The Chirality Induced Spin Selectivity (CISS) effect describes the capability of chiral molecules to act as spin filters discriminating flowing electrons according to their spin state. Within molecular spintronics, efforts are focused on developing chiral-molecule-based technologies to control the injection and coherence of spin-polarized currents. Herein, for this purpose, we study spin selectivity properties of a monolayer of a thioalkyl derivative of a thia-bridged triarylamine hetero[4]helicene chemisorbed on a gold surface. A stacked device assembled by embedding a monolayer of these molecules between ferromagnetic and diamagnetic electrodes exhibits asymmetric magnetoresistance with inversion of the signal according to the handedness of molecules, in line with the presence of the CISS effect. In addition, magnetically conductive atomic force microscopy reveals efficient electron spin filtering even at unusually low potentials. Our results demonstrate that thia[4]heterohelicenes represent key candidates for the development of chiral spintronic devices.

9.
Adv Mater ; 35(28): e2300472, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37170702

RESUMEN

Molecular spins are promising building blocks of future quantum technologies thanks to the unparalleled flexibility provided by chemistry, which allows the design of complex structures targeted for specific applications. However, their weak interaction with external stimuli makes it difficult to access their state at the single-molecule level, a fundamental tool for their use, for example, in quantum computing and sensing. Here, an innovative solution exploiting the interplay between chirality and magnetism using the chirality-induced spin selectivity effect on electron transfer processes is foreseen. It is envisioned to use a spin-to-charge conversion mechanism that can be realized by connecting a molecular spin qubit to a dyad where an electron donor and an electron acceptor are linked by a chiral bridge. By numerical simulations based on realistic parameters, it is shown that the chirality-induced spin selectivity effect could enable initialization, manipulation, and single-spin readout of molecular qubits and qudits even at relatively high temperatures.


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Tecnología , Transporte de Electrón
10.
JACS Au ; 3(4): 1250-1262, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37124308

RESUMEN

Sulfur-rich molecular complexes of dithiolene-like ligands are appealing candidates as molecular spin qubits because spin coherence properties are enhanced in hydrogen-free environments. Herein, we employ the hydrogen-free mononegative 1,3,2-dithiazole-4-thione-5-thiolate (dttt-) ligand as an alternative to common dinegative dithiolate ligands. We report the first synthesis and structural characterization of its Cu2+, Ni2+, and Pt2+ neutral complexes. The XPS analysis of thermal deposition of [Cu(dttt)2] in UHV conditions indicates that films of intact molecules can be deposited on surfaces by sublimation. Thanks to a combined approach employing DC magnetometry and DFT calculations, we highlighted AF exchange interactions of 108 cm-1 and 36 cm-1 attributed to the two different polymorph phases. These couplings are exclusively mediated by S···S VdW interactions, which are facilitated by the absence of counterions and made particularly efficient by the diffuse electron density on S atoms. Furthermore, the spin dynamics of solid-state magnetically diluted samples was investigated. The longest observed T m is 2.3 µs at 30 K, which significantly diverges from the predicted T m > 100 µs. These results point to the diluting matrix severely affecting the coherence lifetime of Cu2+ species via different factors, such as the contributions of neighboring 14N nuclei and the formation of radical impurities in a non-completely controllable way. However, the ease of processing [Cu(dttt)2] via thermal sublimation can allow dispersion in matrices better suited for coherent spin manipulation of isolated molecules and the realization of AF-coupled VdW structures on surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA