Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transbound Emerg Dis ; 65(1): e94-e103, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28815930

RESUMEN

Following the emergence of the Schmallenberg virus (SBV) in 2011 in Germany and its rapid spread in Europe, Culicoides (Diptera: Ceratopogonidae) collected through the French surveillance network were analysed in order to record the presence of virus genome into species diversity collected, to assess the minimum infectious rates (MIR) and the virus circulation dynamics in Culicoides populations. Two vector activity periods were selected (2011, August to October, 53 sites and 2012, June to October, 35 sites) corresponding to 704 night collections. A total of 29,285 individual midges covering at least 50 species were tested either in pools of maximum 50 females or individually (for Culicoides obsoletus/Culicoides scoticus) using real-time RT-PCR. Nine species were found SBV positive (C. obsoletus, C. scoticus, Culicoides chiopterus, Culicoides dewulfi, Culicoides imicola, Culicoides pulicaris, Culicoides newsteadi, Culicoides lupicaris and Culicoides nubeculosus) with overall MIR ranging from 0.2% to 4.2%. While the Culicoides nubeculosus laboratory strain is generally considered to have only low vector competence for viruses, interestingly, field-caught C. nubeculosus specimens were found positive twice for SBV. The first SBV-positive pool was recorded in August 2011 in north-eastern France, dating the virus circulation in France 5 months earlier than the first recorded congenital malformations and 2 months earlier than the former recorded date based on retrospective serological data. The MIR were maximum in October 2011, and in July 2012 according to dates of virus arrival in the studied areas. Moreover, our study also showed that virus circulation could be locally intense with infection rate (IR) reaching up to 16% for C. obsoletus/C. scoticus in July 2012 in one site of western France. This retrospective study demonstrates the importance of large-scale analysis to describe the spatio-temporal dynamics of virus circulation.


Asunto(s)
Infecciones por Bunyaviridae/veterinaria , Ceratopogonidae/virología , Brotes de Enfermedades/veterinaria , Insectos Vectores/virología , Orthobunyavirus/aislamiento & purificación , Animales , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/transmisión , Infecciones por Bunyaviridae/virología , Femenino , Francia/epidemiología , Orthobunyavirus/clasificación , Orthobunyavirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Estudios Retrospectivos , Análisis Espacio-Temporal
2.
Mol Ecol ; 24(22): 5707-25, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26460724

RESUMEN

Understanding the demographic history and genetic make-up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C. imicola in the south of the Mediterranean basin by the 1970s. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C. imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C. imicola could have colonized the Mediterranean basin in the Late Pleistocene or Early Holocene through a single event of introduction; however, we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but rather to biological changes in the vector or the virus.


Asunto(s)
Ceratopogonidae/genética , Genética de Población , Insectos Vectores/genética , África , Animales , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Marcadores Genéticos , Región Mediterránea , Repeticiones de Microsatélite , Modelos Genéticos , Filogeografía , Análisis de Secuencia de ADN
3.
J Med Entomol ; 48(2): 351-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21485373

RESUMEN

Bluetongue virus (BTV) is an economically important arbovirus of ruminants transmitted by Culicoides biting midges. Vector control using residual spraying or application to livestock is recommended by many authorities to reduce BTV transmission; however, the impact of these measures in terms of both inflicting mortality on Culicoides and subsequently upon BTV transmission is unclear. This study consisted of a standardized World Health Organization laboratory assay to determine the susceptibility of European Culicoides species to deltamethrin and a field trial based upon allowing individuals of a laboratory strain of Culicoides nubeculosus Meigen to feed upon sheep treated with Butox 7.5 pour-on (a deltamethrin-based topical formulation). Susceptibility in the laboratory trial was higher in colony C. nubeculosus (24-h LC90 = 0.00106%), than in field populations of Culicoides obsoletus Meigen (24-h LC90 = 0.00203%) or Culicoides imicola Kieffer (24-h LC90 = 0.00773%). In the field, the pour-on formulation was tested with a total of 816 C. nubeculosus specimens fed upon on the thigh of treated sheep. The study revealed a maximum mortality rate of 49% at 4 d postapplication, and duration of lethal effect was predicted to be as short as 10 d, despite testing being carried out with a highly susceptible strain. The reasons for this low efficacy are discussed with reference both to the potential for lack of spread of the active ingredient on the host and feeding patterns of the major potential vector species on the sheep host. Practical implications for vector control strategies during BTV incursions are also detailed.


Asunto(s)
Ceratopogonidae/efectos de los fármacos , Insecticidas/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Administración Tópica , Aerosoles , Animales , Insecticidas/administración & dosificación , Insecticidas/química , Nitrilos/administración & dosificación , Nitrilos/química , Piretrinas/administración & dosificación , Piretrinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...