Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29512, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38699753

RESUMEN

The incorporation of intermittent renewable energy sources into a consistently controlled power transmission system hinges on advancements in energy storage technologies. Sodium ion batteries (SIBs) are emerging as a primary and viable alternative material due to their electrochemical activity, presenting a potential replacement for the next generation of lithium-ion battery (LIB) energy storage materials. However, this transition may necessitate significant alterations in the anode material, given the incompatibility of the current anode with sodium ions and the electrolyte. This review provides a comprehensive summary of various anode materials employed in SIBs, categorized according to their storage mechanisms. Additionally, it explores the growing focus on utilizing hard carbon as an anode material, driven by factors such as its relatively high specific capacity compared to graphite, cost-effective production, and eco-friendly properties as it can be derived from biomass. The review further addresses recent progress in hard carbon, detailing production methods, modifications, challenges, limitations in integrating hard carbon into the anode of SIBs, and suggests potential directions for future research.

2.
Sci Rep ; 10(1): 3135, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081972

RESUMEN

Microwave absorption properties were systematically studied for double-layer carbon black/epoxy resin (CB) and Ni0.6Zn0.4Fe2O4/epoxy resin (F) nanocomposites in the frequency range of 8 to 18 GHz. The Ni0.6Zn0.4Fe2O4 nanoparticles were synthesized via high energy ball milling with subsequent sintering while carbon black was commercially purchased. The materials were later incorporated into epoxy resin to fabricate double-layer composite structures with total thicknesses of 2 and 3 mm. The CB1/F1, in which carbon black as matching and ferrite as absorbing layer with each thickness of 1 mm, showed the highest microwave absorption of more than 99.9%, with minimum reflection loss of -33.8 dB but with an absorption bandwidth of only 2.7 GHz. Double layer absorbers with F1/CB1(ferrite as matching and carbon black as absorbing layer with each thickness of 1 mm) structure showed the best microwave absorption performance in which more than 99% microwave energy were absorbed, with promising minimum reflection loss of -24.0 dB, along with a wider bandwidth of 4.8 GHz and yet with a reduced thickness of only 2 mm.

3.
ACS Appl Mater Interfaces ; 11(7): 7320-7329, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30688429

RESUMEN

The growing number of patient morbidity related to nosocomial infections has placed an importance on the development of new antibacterial coatings for medical devices. Here, we utilize the versatile adhesion property of polydopamine (pDA) to design an antibacterial coating that possesses low-fouling and nitric oxide (NO)-releasing capabilities. To demonstrate this, glass substrates were functionalized with pDA via immersion in alkaline aqueous solution containing dopamine, followed by grafting of low-fouling polymer (poly(ethylene glycol) (PEG)) via Michael addition and subsequent formation of N-diazeniumdiolate functionalities (NO precursors) by purging with NO gas. X-ray photoelectron spectroscopy confirmed the successful grafting of PEG and formation of N-diazeniumdiolate on polydopamine-coated substrates. NO release from the coating was observed over 2 days, and NO loading is tunable by the pDA film thickness. The antibacterial efficiency of the coatings was assessed using Gram-negative Pseudomonas aeruginosa (i.e., wild-type PAO1 and multidrug-resistant PA37) and Gram-positive Staphylococcus aureus (ATCC 29213). The NO-releasing PEGylated pDA film inhibited biofilm attachment by 96 and 70% after exposure to bacterial culture solution for 24 and 36 h, respectively. In contrast, films that do not contain NO failed to prevent biofilm formation on the surfaces at these time points. Furthermore, this coating also showed 99.9, 97, and 99% killing efficiencies against surface-attached PAO1, PA37, and S. aureus bacteria. Overall, the combination of low-fouling PEG and antibacterial activity of NO in pDA films makes this coating a potential therapeutic option to inhibit biofilm formation on medical devices.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos , Indoles , Óxido Nítrico , Polímeros , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/fisiología , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Indoles/química , Indoles/farmacología , Óxido Nítrico/química , Óxido Nítrico/farmacología , Polímeros/química , Polímeros/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...