Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37297263

RESUMEN

Over the past few years, alternative power supplies to either supplement or replace batteries for electronic textile and wearable applications have been sought, with the development of wearable solar energy harvesting systems gaining significant interest. In a previous publication the authors reported a novel concept to craft a yarn capable of harvesting solar energy by embedding miniature solar cells within the fibers of a yarn (solar electronic yarns). The aim of this publication is to report the development of a large-area textile solar panel. This study first characterized the solar electronic yarns, and then analyzed the solar electronic yarns once woven into double cloth woven textiles; as part of this study, the effect of different numbers of covering warp yarns on the performance of the embedded solar cells was explored. Finally, a larger woven textile solar panel (510 mm × 270 mm) was constructed and tested under different light intensities. It was observed that a PMAX = 335.3 ± 22.4 mW of energy could be harvested on a sunny day (under 99,000 lux lighting conditions).

2.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053873

RESUMEN

The aim of the publication is to report the accuracy, repeatability and the linearity of three commercially available interface pressure measurement systems employed in the treatment of venous disease. The advances in the treatment and management of chronic venous disease by compression therapy have led to considerable research interest in interface pressure measurement systems capable of measuring low-pressure ranges (10-60 mmHg). The application of a graduated pressure profile is key for the treatment of chronic venous disease which is achieved by using compression bandages or stockings; the required pressure profiles are defined in standards (BSI, RAL-GZ, or AFNOR) for different conditions. However, achieving the recommended pressure levels and its accuracy is still deemed to be a challenge. Thus, it is vital to choose a suitable pressure measurement system with high accuracy of interface pressure. The authors investigated the sensing performance of three commercially available different pressure sensors: two pneumatic based (AMI and PicoPress®) and one piezoresistive (FlexiForce®) pressure sensors, with extensive experimental work on their performance in terms of linearity, repeatability, and accuracy. Both pneumatic based pressure measurement systems have shown higher accuracy in comparison to the flexible piezoresistive pressure sensors.


Asunto(s)
Enfermedades Vasculares , Enfermedad Crónica , Diseño de Equipo , Humanos , Presión , Enfermedades Vasculares/diagnóstico , Venas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA