Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(15): 13971-13981, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37091383

RESUMEN

Most of the world's crop production and plant growth are anticipated to be seriously threatened by the increasing tropospheric ozone (O3) levels. The current study demonstrates how different mung bean genotypes reacted to the elevated level of O3 in the presence of exogenous ascorbic and silicic acid treatments. It is the first report to outline the potential protective effects of ascorbic and silicic acid applications against O3 toxicity in 12 mung bean {Vigna radiata (L.) Wilken} varieties. Under controlled circumstances, the present investigation was conducted in a glass house. There were four different treatments used: control (ambient O3 concentration of 40-45 ppb), elevated O3 (120 ppb), elevated O3 with silicic acid (0.1 mM), and elevated O3 with ascorbic acid (10 mM). Three varieties, viz. NM 20-21, NM 2006, and NM 2016, showcased tolerance to O3 toxicity. Our findings showed that ascorbic and silicic acid applications gradually increased yield characteristics such as seed yield, harvest index, days to maturity, and characteristics related to gas exchange such as transpiration rate, stomatal conductance, net photosynthetic activity, and water-use efficiency. Compared to the control, applying both growth regulators enhanced the mineral uptake across all treatments. Based on the findings of the current study, it is concluded that the subject mung bean genotypes responded to silicic acid treatment more efficiently than ascorbic acid to mitigate the harmful effects of O3 stress.

2.
Environ Sci Pollut Res Int ; 29(46): 69680-69690, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35576036

RESUMEN

The present work provides an insight into the development of biochemical adaptations in mung beans against ozone (O3) toxicity. The study aims to explore the O3 stress tolerance potential of mung bean genotypes under exogenous application of growth regulators. The seeds of twelve mung bean genotypes were grown in plastic pots under controlled conditions in the glasshouse. Six treatments, control (ambient ozone level 40-45 ppb), ambient O3 with ascorbic acid, ambient ozone with silicic acid, elevated ozone (120 ppb), elevated O3 with ascorbic acid (10 mM), and elevated ozone with silicic acid (0.1 mM) were applied. The O3 fumigation was carried out using an O3 generator. The results revealed that ascorbic acid and silicic acid application decreased the number of plants with foliar O3 injury symptoms in different degrees, i.e., zero, first, second, third, and fourth degrees; whereas 0-4 degree symptoms represent, no symptoms, symptoms occupying < 1/4, 1/4-1/2, 1/2-3/4, and > 3/4 of the total foliage area, respectively. Application of ascorbic acid and silicic acid also prevented the plants from the negative effects of O3 in terms of fresh as well as dry matter production, leaf chlorophyll, carotenoids, soluble proteins and ascorbic acid, proline, and malondialdehyde (MDA) contents. Overall, silicic acid application proved more effective in reducing the negative effects of O3 on mung bean genotypes as compared to that of the ascorbic acid. Three mung bean genotypes (NM 20-21, NM-2006, and NM-2016) were identified to have a better adaptive mechanism for O3 toxicity tolerance and may be good candidates for future variety development programs.


Asunto(s)
Fabaceae , Ozono , Vigna , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Carotenoides/metabolismo , Clorofila/metabolismo , Malondialdehído/metabolismo , Ozono/farmacología , Hojas de la Planta/metabolismo , Plásticos/metabolismo , Prolina/metabolismo , Ácido Silícico/metabolismo , Ácido Silícico/farmacología , Vigna/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...