Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(13): e34074, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071709

RESUMEN

Empagliflozin (EMP) is known for its poor safety and efficacy profile due to its fast body distribution and poor solubility. Accordingly, an oral long-acting and floating/raft-forming nano gel was optimized to release coated EMP nanoparticles, and the released EMP nanoparticles showed enhanced dissolution compared to raw EMP particles. To repurpose EMP for cancer treatment, EMP shows anti-cancer and anti-inflammatory effects against cancer cells. EMP nanoparticles were characterized using FT-IR, PXRD, SEM, EMP encapsulation assay, and release studies. The raft-forming gel encapsulating the EMP was optimized and characterized. The EMP co-polymeric nanoparticles were studied to investigate EMP anti-cancer and anti-inflammatory activities against stomach cancer cells. The solubility of EMP nanoparticles was enhanced in 0.1 N HCl and pH 6.8 by 5 and 12 folds, respectively, compared to raw EMP powder. The particle size and zeta-potential values of improved EMP nanoparticles were 135.40 ± 18.60 nm, and -19.30 ± 0.80 mV, respectively. FT-IR, PXRD, SEM and TEM characterizations revealed polymeric coating of EMP particles. The study suggested that this optimized controlled-release raft-forming gel is a promising local oral approach against stomach cancer. The repurposing of EMP co-polymeric nanoparticles for stomach cancer and associated gastritis treatment was justified.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38703207

RESUMEN

Parthenolide (PTL) is a sesquiterpene lactone that occurs naturally. It demonstrates a variety of beneficial effects, such as antioxidant, anti-inflammatory, and antiapoptotic properties. The study investigated the potential protective impact of PTL on indomethacin (INDO) induced stomach ulcers in rats. The rats were classified into 5 distinct categories. Group 1 served as the "control" group. Rats in the second group received a single oral dosage of INDO (50 mg kg-1). Rats in Groups three and four received 20 and 40 mg kg-1 oral PTL 1 h before INDO. Omeprazole (30 mg kg-1) was given orally to Group 5 rats 1 h before INDO. Pretreatment with PTL increased stomach pH and decreased gastric volume as well as reduced the morphological and histological changes induced by INDO. Analysis of probable pathways showed that pre-treatment with PTL successfully reduced oxidative, inflammatory, and apoptotic consequences caused by INDO. The ingestion of PTL leads to a notable increase in the levels of glutathione reduced (GSH) and the activities of superoxide dismutase (SOD) and catalase (CAT). Furthermore, PTL decreased the concentration of malondialdehyde (MDA). In contrast, it was shown that PTL increased both cyclooxygenase-1 (COX-1) and prostaglandin E2 (PGE2). PTL shows a significant decrease in the expression of interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB). PTL therapy resulted in a decrease in Bcl-2-associated X protein (Bax) levels and an increase in B-cell lymphoma 2 (Bcl2) levels. In conclusion, PTL offers gastroprotection by its antioxidant, anti-inflammatory, and anti-apoptotic qualities.

3.
Saudi Pharm J ; 31(10): 101787, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37766820

RESUMEN

Myocardial injury (MI) is an important pathological driver of mortality worldwide., and arises as a result of imbalances between myocardial oxygen demand and supply. In MI, oxidative stress often leads to inflammatory changes and apoptosis. Current therapies for MI are known to cause various adverse effects. Consequently, the development of new therapeutic agents with a reduced adverse event profile is necessary. In this regard, 2-methoxyestradiol (2ME), the metabolic end-product of oestradiol, possesses anti-inflammatory and antioxidant properties. The aim of this research is to assess the impact of 2ME on cardiac injury caused by isoproterenol (ISO) in rats. Animals were separated into six groups; controls, and those receiving 2ME (1 mg/kg), ISO (85 mg/kg), ISO + 2ME (0.25 mg/kg), ISO + 2ME (0.5 mg/kg), and ISO + 2ME (1 mg/kg). 2ME significantly attenuated ISO-induced changes in electrocardiographic changes and the cardiac histological pattern. This compound also decreased lactate dehydrogenase activity, creatine kinase myocardial band and troponin levels. The ability of 2ME to act as an antioxidant was shown by a decrease in malondialdehyde concentration, and the restoration of glutathione levels and superoxide dismutase activity. Additionally, 2ME antagonized inflammation and cardiac cell apoptosis, a process determined to be mediated, at least partially, by suppression of Gal-3/TLR4/MyD88/NF-κB signaling pathway. 2ME offers protection against acute ISO-induced MI in rats and offers a novel therapeutic management option.

4.
Saudi Pharm J ; 31(5): 736-745, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37181143

RESUMEN

The current study was designed to develop a nanoconjugate of cordycepin-melittin (COR-MEL) and assess its healing property in wounded diabetic rats. The prepared nanoconjugate has a particle size of 253.5 ± 17.4 nm with a polydispersity index (PDI) of 0.35 ± 0.04 and zeta potential of 17.2 ± 0.3 mV. To establish the wound healing property of the COR-MEL nanoconjugate, animal studies were pursued, where the animals with diabetes were exposed to excision and treated with COR hydrogel, MEL hydrogel, or COR-MEL nanoconjugate topically. The study demonstrated an accelerated wound contraction in COR-MEL nanoconjugate -treated diabetic rats, which was further validated by histological analysis. The nanoconjugate further exhibited antioxidant activities by inhibiting the accumulation of malondialdehyde (MDA) and exhaustion of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic activities. The nanoconjugate further demonstrated an enhanced anti-inflammatory activity by retarding the expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. Additionally, the nanoconjugate exhibits a strong expression of transforming growth factor (TGF)-ß1, vascular endothelial growth factor (VEGF)-A, and platelet-derived growth factor (PDGFR)-ß, indicating enrichment of proliferation. Likewise, nanoconjugate increased the concentration of hydroxyproline as well as the mRNA expression of collagen, type I, alpha 1 (Col 1A1). Thus, it is concluded that the nanoconjugate possesses a potent wound-healing activity in diabetic rats via antioxidant, anti-inflammatory, and pro-angiogenetic mechanisms.

5.
Biomedicines ; 11(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37239014

RESUMEN

BACKGROUND: Hepatic fibrosis is a major health problem all over the world, and there is no effective treatment to cure it. Hence, the current study sought to assess the anti-fibrotic efficacy of apigenin against CCl4-induced hepatic fibrosis in mice. METHODS: Forty-eight mice were put into six groups. G1: Normal Control, G2: CCl4 Control, G3: Silymarin (100 mg/kg), G4 and G5: Apigenin (2 &20 mg/Kg), G6: Apigenin alone (20 mg/Kg). Groups 2, 3, 4, and 5 were given CCl4 (0.5 mL/kg. i.p.) twice/week for six weeks. The level of AST, ALT, TC, TG, and TB in serum and IL-1ß, IL-6, and TNF-α in tissue homogenates were assessed. Histological studies by H&E staining and Immunostaining of liver tissues were also performed. RESULTS: The CCl4-challenged group showed increased serum AST (4-fold), ALT (6-fold), and TB (5-fold). Both silymarin and apigenin treatments significantly improved these hepatic biomarkers. The CCl4-challenged group showed reduced levels of CAT (89%), GSH (53%), and increased MDA (3-fold). Both silymarin and apigenin treatments significantly altered these oxidative markers in tissue homogenates. The CCl4-treated group showed a two-fold increase in IL-1ß, IL-6, and TNF-α levels. Silymarin and apigenin treatment considerably decreased the IL-1ß, IL-6, and TNF-α levels. Apigenin treatment inhibited angiogenic activity, as evidenced by a decrease in VEGF (vascular endothelial growth factor) expression in liver tissues, and a decline in vascular endothelial cell antigen expression (CD34). CONCLUSIONS: Finally, these data collectively imply that apigenin may have antifibrotic properties, which may be explained by its anti-inflammatory, antioxidant, and antiangiogenic activities.

6.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985711

RESUMEN

Nephrotoxicity is a serious complication that limits the clinical use of gentamicin (GEN). Parthenolide (PTL) is a sesquiterpene lactone derived from feverfew with various therapeutic benefits. However, PTL possesses low oral bioavailability. This study aimed to evaluate the therapeutic protective effects of PTL-phytosomes against GEN-induced nephrotoxicity in rats. The PTL was prepared as phytosomes to improve the pharmacological properties with a particle size of 407.4 nm, and surface morphology showed oval particles with multiple edges. Rats were divided into six groups: control, nano-formulation plain vehicle, PTL-phytosomes (10 mg/kg), GEN (100 mg/kg), GEN + PTL-phytosomes (5 mg/kg), and GEN + PTL-phytosomes (10 mg/kg). The administration of PTL-phytosomes alleviated GEN-induced impairment in kidney functions and histopathological damage, and decreased kidney injury molecule-1 (KIM-1). The anti-oxidative effect of PTL-phytosomes was demonstrated by the reduced malondialdehyde (MDA) concentration and increased superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, PTL-phytosomes treatment significantly enhanced sirtuin 1 (Sirt-1), nuclear factor erythroid-2-related factor-2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), and heme oxygenase-1 (HO-1). Additionally, PTL-phytosomes treatment exhibited anti-inflammatory and anti-apoptotic properties in the kidney tissue. These findings suggest that PTL-phytosomes attenuate renal dysfunction and structural damage by reducing oxidative stress, inflammation, and apoptosis in the kidney.


Asunto(s)
Gentamicinas , Sesquiterpenos , Ratas , Animales , Gentamicinas/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Fitosomas , Sirtuina 1/metabolismo , Riñón , Antioxidantes/farmacología , Sesquiterpenos/farmacología , Sesquiterpenos/metabolismo , Estrés Oxidativo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo
7.
Saudi Pharm J ; 31(2): 255-264, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36942271

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is one of chemotherapies' most often documented side effects. Patients with CIPN experience spontaneous burning, numbness, tingling, and neuropathic pain in their feet and hands. Currently, there is no effective pharmacological treatment to prevent or treat CIPN. Activating the cannabinoid receptor type 1 (CB1) by orthosteric agonists has shown promising results in alleviating the pain and neuroinflammation associated with CIPN. However, the use of CB1 orthosteric agonists is linked to undesirable side effects. Unlike the CB1 orthosteric agonists, CB1 positive allosteric modulators (PAMs) don't produce any psychoactive effects, tolerance, or dependence. Previous studies have shown that CB1 PAMs exhibit antinociceptive effects in inflammatory and neuropathic rodent models. This study aimed to investigate the potential benefits of the newly synthesized GAT229, a pure CB1 PAM, in alleviating neuropathic pain and slowing the progression of CIPN. GAT229 was evaluated in a cisplatin-induced (CIS) mouse model of peripheral neuropathic pain (3 mg/kg/d, 28 d, i.p.). GAT229 attenuated and slowed the progression of thermal hyperalgesia and mechanical allodynia induced by CIS, as evaluated by the hotplate test and von Frey filament test. GAT229 reduced the expression of proinflammatory cytokines in the dorsal root ganglia (DRG) neurons. Furthermore, GAT229 attenuated nerve injuries by normalizing the brain-derived neurotrophic factor and the nerve growth factor mRNA expression levels in the DRG neurons. The CB1 receptor antagonist/inverse agonist AM251 blocked GAT229-mediated beneficial effects. According to our data, we suggest that CB1 PAMs might be beneficial in alleviating neuropathic pain and slowing the progression of CIPN.

8.
J Cosmet Dermatol ; 22(4): 1220-1232, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36606411

RESUMEN

BACKGROUND: Scar formation is undesirable both cosmetically and functionally. It shows that silicone gel is effective in preventing and improving scars formed due to a wound formation after injury. OBJECTIVES: This study investigates whether a silicone gel composition based on a novel concept of infusing a biologically active material such as hyaluronic acid and/or salts with various polysiloxane derivatives in a specific proportion to achieve desired viscosity range and their action has a synergistic beneficial effect on skin scar after injury. METHODS: We have developed a topical gel utilizing a combination of emulsifiers, sodium hyaluronate, polysiloxane, and its derivatives. The method of preparation comprises mixing of aqueous phase dispersion and polysiloxanes blend under stirring at room temperature. RESULTS: It results in the formation of a homogenous smooth gel formulation. The developed topical gel formulation was characterized for physicochemical properties, rheology, stability, and anti-scar activity in Wistar rats. It was found that the developed formulation system consists of desirable attributes for skin applications. In vivo investigation of developed polysiloxane gel formulation for anti-scar activity shown promising outcomes compared to marketed product (Kelo-cote scar gel). Furthermore, a histopathology study of healed skin tissues observed the formation of microscopic skin structures compared to the Kelo-cote scar gel. CONCLUSIONS: It indicates that the combination of polysiloxanes and sodium hyaluronate resulting an improvement in anti-scar activity compared to the marketed product containing polysiloxanes alone.


Asunto(s)
Cicatriz , Ácido Hialurónico , Geles de Silicona , Siloxanos , Animales , Ratas , Administración Tópica , Cicatriz/tratamiento farmacológico , Cicatriz/etiología , Cicatriz/patología , Cicatriz/prevención & control , Geles/administración & dosificación , Geles/química , Ácido Hialurónico/administración & dosificación , Ratas Wistar , Geles de Silicona/administración & dosificación , Geles de Silicona/química , Siloxanos/administración & dosificación , Viscosidad , Combinación de Medicamentos , Fármacos Dermatológicos/administración & dosificación , Fármacos Dermatológicos/química , Piel/efectos de los fármacos , Piel/patología
9.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36355482

RESUMEN

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Oxidative stress plays an important role in the pathophysiology of DPN. Red Sea marine sponge Xestospongia testudinaria extract has a promising neuroprotective effect, presumably owing to its antioxidant and anti-inflammatory properties. Thus, this study aimed to investigate the neuroprotective effect of the sponge X. testudinaria extract on in vitro and in vivo models of DPN. Mice dorsal root ganglia (DRG) were cultured with high glucose (HG) media and used as an in vitro model of DPN. Some of the DRGs were pre-treated with 2 mg/mL of X. testudinaria. The X. testudinaria extract significantly improved the HG-induced decreased neuronal viability and the neurite length. It improved the oxidative stress biomarkers in DRG cultures. The DPN model was induced in vivo by an injection of streptozotocin at a dose of 150 mg/kg in mice. After 35 days, 0.75 mg/kg of the X. testudinaria extract improved the hot hyperalgesia and the DRG histology. Although the sponge extract did not reduce hyperglycemia, it ameliorated the oxidative stress markers and pro-inflammatory markers in the DRG. In conclusion, the current study demonstrates the neuroprotective effect of Red Sea sponge X. testudinaria extract against experimentally induced DPN through its antioxidant and anti-inflammatory mechanisms.

10.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36077466

RESUMEN

Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid nanocarriers, and lipid-polymer hybrid nanoparticles are developed for cancer treatment which is well confirmed and documented. LNPs include various therapeutic advantages as compared to conventional therapy and other nanoparticles, including increased loading capacity, enhanced temporal and thermal stability, decreased therapeutic dose and associated toxicity, and limited drug resistance. In addition to these, LNPs overcome physiological barriers which provide increased accumulation of therapeutics at the target site. Extensive efforts by the scientific community could make some of the liposomal formulations the clinical reality; however, the relatively high cost, problems in scaling up the formulations, and delivery in a more targetable fashion are some of the major issues that need to be addressed. In the present review, we have compiled the state of the art about different types of LNPs with the latest advances reported for the treatment of TNBC in recent years, along with their clinical status and toxicity in detail.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Antineoplásicos/uso terapéutico , Portadores de Fármacos , Femenino , Humanos , Lípidos/uso terapéutico , Liposomas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
11.
Curr Issues Mol Biol ; 44(6): 2505-2528, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35735612

RESUMEN

Dry mouth is characterized by lower saliva production and changes in saliva composition. In patients with some salivary gland function remaining, pharmaceutical treatments are not recommended; therefore, new, more effective methods of promoting saliva production are needed. Hence, this study aimed to provide an overview of the histological changes in the salivary gland in the model of isoproterenol (ISO)-induced degenerative changes in male Wistar rats and to evaluate the protective effect of piceatannol. Thirty-two male Wistar rats were randomly divided into four groups: the control group, the ISO group, and the piceatannol (PIC)-1, and -2 groups. After the third day of the experiment, Iso (0.8 mg/100 g) was injected intraperitoneally (IP) twice daily into the animals. PIC was given IP in different daily doses (20 and 40 mg/kg) for three days before ISO and seven days with ISO injection. The salivary glands were rapidly dissected and processed for histological, histochemical, immunohistochemical (Ki-67), and morphometric analysis. Upon seven days of treatment with ISO, marked hypertrophy was observed, along with an increased number of positive Ki-67 cells. Proliferation was increased in some endothelial cells as well as in ducts themselves. Despite the significant decrease in proliferation activity, the control group did not return to the usual activity level after treatment with low-dose PIC. Treatment with a high dose of PIC reduced proliferative activity to the point where it was substantially identical to the results seen in the control group. An ISO-driven xerostomia model showed a novel protective effect of piceatannol. A new era of regenerative medicine is dawning around PIC's promising role.

12.
Nutrients ; 14(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35565857

RESUMEN

Endometrial hyperplasia (EH) is the most common risk factor for endometrial malignancy in females. The pathogenesis of EH has been directly linked to uterine inflammation, which can result in abnormal cell division and decreased apoptosis. Piceatannol (PIC), a natural polyphenolic stilbene, is known to exert anti-inflammatory, antioxidant and anti-proliferative activities. The aim of the present study was to examine the potential preventive role of PIC in estradiol benzoate (EB)-induced EH in rats. A self-nanoemulsifying drug delivery system (SNEDDS) was prepared to improve the solubility of the PIC. Therefore, thirty female Wistar rats were divided into five groups: (1) control, (2) PIC SNEDDS (10 mg/kg), (3) EB (0.6 mg/kg), (4) EB + PIC SNEDDS (5 mg/kg) and (5) EB + PIC SNEDDS (10 mg/kg). The administration of PIC SNEDDS prevented EB-induced increases in uterine weights and histopathological changes. Additionally, it displayed pro-apoptotic and antioxidant activity in the endometrium. Immunohistochemical staining of uterine sections co-treated with PIC SNEDDS showed significantly decreased expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and nuclear transcription factor-kappa B (NF-κB). This anti-inflammatory effect was further confirmed by a significant increase in Nrf2 and heme oxygenase-1 (HO-1) expression. These results indicate that SNEDDS nanoformulation of PIC possesses protective effects against experimentally induced EH.


Asunto(s)
Hiperplasia Endometrial , Estilbenos , Animales , Antiinflamatorios/uso terapéutico , Antioxidantes/metabolismo , Hiperplasia Endometrial/inducido químicamente , Hiperplasia Endometrial/tratamiento farmacológico , Hiperplasia Endometrial/prevención & control , Estradiol/farmacología , Femenino , Hemo-Oxigenasa 1/metabolismo , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar , Estilbenos/uso terapéutico
13.
Gels ; 8(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35323302

RESUMEN

The aim of the study was to develop and evaluate the Ginkgo biloba nanocomplex gel (GKNG) as a long-acting formulation for the wound healing potential. Pharmaceutical analysis showed an average particle size of 450.14 ± 36.06 nm for GKNG, zeta potential +0.012 ± 0.003 mV, and encapsulation efficiency 91 ± 1.8%. The rheological analysis also showed the optimum diffusion rate and viscosity needed for topical drug delivery. Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis further confirmed the success of GKNG. The in vivo study showed increments in the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) and a lower level of lipid peroxidation (MDA) after GKNG treatment. The GKNG group showed upregulations in collagen type I, as alpha 1 collagen (COL1A1), and collagen type IV, as alpha 1 collagen (COL4A1). Furthermore, the in vivo study showed increments in hydroxyproline, epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and transforming growth factor-beta 1 (TGF-ß1) after the GKNG. Additionally, GKNG effectively increased the wound contraction compared to GK gel and sodium alginate (SA) gel. Based on the in vitro and in vivo evaluation, GKNG effectively accelerated wound healing by modulation of antioxidant enzymes, collagens, angiogenic factors, and TGF-ß1.

14.
Life (Basel) ; 12(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35330107

RESUMEN

One of the major aggressive factors that affect gastric injury is non-steroidal anti-inflammatory drugs (NSAIDs). Indomethacin (Indo) showed higher potentiality in gastric injury over conventional NSAIDs. Piceatannol (PIC) is a natural polyphenolic stilbene that possesses potent antioxidant and anti-inflammatory properties. The gastroprotective properties of PIC have been overlooked previously. Hence, we aim to study gastric injury induced by Indo and the protective action manifested by PIC, as well as to elucidate the likely underlying mechanisms of action in a rat model. The rats have been treated with vehicle, Indo alone, combined treatment with Indo, and PIC at (5 mg/kg or 10 mg/kg), respectively. The rats were also treated with Indo and omeprazole. In our study, we found that PIC at both 5 and 10 mg/kg doses was effective by averting the rise in ulcer and lesion indices, acid production, and histological variations persuaded by Indo. Mechanistically, PIC significantly reduced lipid peroxidation product (MDA), increased the GSH content, and enhanced SOD and CAT activity. In addition, PIC exhibits a distinct reduction in the levels of inflammatory parameters (Cox-2, IL-6, TNF-α, and NFκB). Contrastingly, PIC augmented both mucin and PGE2 content. Moreover, PIC fostered angiogenesis by increasing the expression of proangiogenic factors (VEGF, bFGF, and PDGF). Overall, the above results suggest PIC exhibits a potential protective effect against Indo-induced gastric ulcers by the antioxidant, anti-inflammatory, and angiogenic mechanisms.

15.
Nutrients ; 14(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35215383

RESUMEN

Doxorubicin (DOX), a commonly utilized anthracycline antibiotic, suffers deleterious side effects such as cardiotoxicity. Mokko lactone (ML) is a naturally occurring guainolide sesquiterpene with established antioxidant and anti-inflammatory actions. This study aimed at investigating the protective effects of ML in a DOX-induced cardiotoxicity model in rats. Our results indicated that ML exerted protection against cardiotoxicity induced by DOX as indicated by ameliorating the rise in serum troponin and creatine kinase-MB levels and lactate dehydrogenase activity. Histological assessment showed that ML provided protection against pathological alterations in heart architecture. Furthermore, treatment with ML significantly ameliorated DOX-induced accumulation of malondialdehyde and protein carbonyl, depletion of glutathione, and exhaustion of superoxide dismutase and catalase. ML's antioxidant effects were accompanied by increased nuclear translocation of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, ML exhibited significant anti-inflammatory activities as evidenced by lowered nuclear factor κB, interleukin-6, and tumor necrosis factor-α expression. ML also caused significant antiapoptotic actions manifested by modulation in mRNA expression of Bax, Bcl-2, and caspase-3. This suggests that ML prevents heart injury induced by DOX via its antioxidant, anti-inflammatory, and antiapoptotic activities.


Asunto(s)
Cardiotoxicidad , Sesquiterpenos , 4-Butirolactona/análogos & derivados , Animales , Antiinflamatorios/uso terapéutico , Antioxidantes/metabolismo , Apoptosis , Cardiotoxicidad/prevención & control , Doxorrubicina/toxicidad , Miocardio/metabolismo , Estrés Oxidativo , Ratas , Sesquiterpenos/uso terapéutico
16.
Nanomaterials (Basel) ; 13(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36616087

RESUMEN

Innovative drug delivery systems based on iron oxide nanoparticles (INPs) has generated a lot of interest worldwide and have prime biomedical benefits in anticancer therapy. There are still issues reported regarding the stability, absorption, and toxicity of iron oxide nanoparticles (INPs) when administered due to its rapid surface oxidation and agglomeration with blood proteins. To solve this problem, we have synthesized trehalose-coated stabilized iron oxide nanoparticles (TINPs) by a co-precipitation technique. The surface coating of INPs with trehalose helps to improve the stability, prevents protein binding, and increase absorption uptake inside the body. Developed TINPs was then loaded with anticancer drug cytarabine by chemical crosslinking encapsulation method using suitable solvent. Engineered cytarabine-loaded trehalose-coated stabilized iron oxide nanoparticles (CY-TINPs) were optimized for particle size, zeta potential (-13.03 mV), and solid-state characterization such as differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), and transmission electron microscope (TEM) studies. The particle size of 50 nm was achieved for developed CY-TINPs. The developed CY-TINPs was further evaluated for in vitro cell line investigations which confirmed potential cytotoxic activity. Developed CY-TINPs show remarkable enhancement in in vivo pharmacokinetic parameters Cmax as 425.26 ± 2.11 and AUC0-72 as 11,546.64 ± 139.82 as compared to pure drug. Compared to traditional drug delivery, the CY-TINPs formulation can effectively delay release, improve bioavailability, and boost cytotoxic activity against tumors.

17.
Gels ; 7(4)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34940336

RESUMEN

This study aimed to develop and evaluate sustained-release (SR) long-acting oral nanocomposites in-situ gelling films of resveratrol (Rv) to treat colorectal cancer. In these formulations, Rv-Soy protein (Rv-Sp) wet granules were prepared by the kneading method and then encapsulated in the sodium alginate (NA) dry films. The prepared nanocomposite in-situ gels films were characterized using dynamic light scattering, Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The optimized formulations were further evaluated based on drug encapsulation efficiency, pH-drug release profile, swelling study, and storage time effects. The optimized formulation was tested for its anticancer activity against colorectal cancer cells using the cytotoxicity assessment, apoptosis testing, cell cycle analysis, gene expression analysis, and protein estimation by the reverse-transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay methods, respectively. The optimum film showed encapsulation efficiency of 97.87% ± 0.51 and drug release of 14.45% ± 0.043 after 8 h. All physiochemical characterizations confirmed, reasoned, and supported the drug release experiment's findings and the encapsulation assay. The Rv nanocomposite formulation showed concentration-dependent cytotoxicity enhanced apoptotic activity as compared to free Rv (p < 0.05). In addition, Rv nanocomposite formulation caused a significant increase in Bcl-2-associated protein X (Bax) and a decrease in expression of B-cell lymphoma 2, interleukin 1 beta, IL-6, and tumor necrosis factor-alpha (Bcl2, IL-1ß, IL-6, and TNF-α respectively) compared to that of free Rv in HCT-116 cells. These results suggest that long-acting Rv nanocomposite gels could be a promising agent for colorectal cancer treatment.

18.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948081

RESUMEN

In the present work, novel modality for lung cancer intervention has been explored. Primary literature has established the potential role of cyclooxygenase-2 (COX-2) inhibitor in regression of multiple forms of carcinomas. To overcome its poor water solubility and boost anticancer activity, etoricoxib (ETO) was chosen as a therapeutic candidate for repurposing and formulated into a nanoemulsion (NE). The prepared ETO loaded NE was characterized for the surface charge, droplet size, surface morphology, and in vitro release. The optimized ETO loaded NE was then investigated for its anticancer potential employing A549 lung cancer cell line via cytotoxicity, apoptotic activity, mitochondrial membrane potential activity, cell migration assay, cell cycle analysis, Caspase-3, 9, and p53 activity by ELISA and molecular biomarker analysis through RT-PCR test. The developed ETO-NE formulation showed adequate homogeneity in the droplet size distribution with polydispersity index (PDI) of (0.2 ± 0.03) and had the lowest possible droplet size (124 ± 2.91 nm) and optimal negative surface charge (-8.19 ± 1.51 mV) indicative of colloidal stability. The MTT assay results demonstrated that ETO-NE exhibited substantial anticancer activity compared to the free drug. The ETO-NE showed a substantially potent cytotoxic effect against lung cancer cells, as was evident from the commencement of apoptosis/necrotic cell death and S-phase cell cycle arrests in A549 cells. The study on these molecules through RT-PCR confirmed that ETO-NE is significantly efficacious in mitigating the abundance of IL-B, IL-6, TNF, COX-2, and NF-kB as compared to the free ETO and control group. The current study demonstrates that ETO-NE represents a feasible approach that could provide clinical benefits for lung cancer patients in the future.


Asunto(s)
Apoptosis , Emulsiones/química , Etoricoxib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química , Células A549 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Movimiento Celular , Proliferación Celular , Etoricoxib/farmacología , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/fisiopatología , Potencial de la Membrana Mitocondrial
19.
Nutrients ; 13(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34836397

RESUMEN

Doxorubicin (DOX), a common chemotherapeutic agent, suffers serious adverse effects including hepatotoxicity. Mokko lactone (ML) is a guainolide sesquiterpene with promising biological activities. The study aimed to evaluate the protection offered by ML against hepatotoxicity induced by DOX in rats. Our data indicated ML exhibited protective effects as evidenced by ameliorating the rise in serum activities of alanine transaminase, aspartate transaminase and alkaline phosphatase. This was confirmed histologically as ML prevented DOX-induced pathological alteration in liver architecture. Further, ML administration significantly prevented malondialdehyde accumulation, glutathione depletion and superoxide dismutase and catalase exhaustion. Antioxidant action of ML was associated with enhanced expression of the nuclear translocation of NF-E2-related factor 2 (Nrf2) and a lower expression of forkhead box protein O1 (FOXO1). Also, ML showed potent anti-inflammatory activities highlighted by decreased expression of interleukin 6, tumor necrosis factor α and nuclear factor κB (NF-κB). The anti-apoptotic effects of ML were associated with decreased Bax and enhanced Bcl-2 mRNA expression in liver tissues. ML caused a significant up-regulation in the expression of silent information regulator 1 (Sirt-1). Therefore, it can be concluded that ML prevents liver injury caused by DOX. This could partially be due to the ML regulatory activities on Sirt-1/FOXO1/NF-κB axis.


Asunto(s)
4-Butirolactona/análogos & derivados , Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Hígado/efectos de los fármacos , Sesquiterpenos/farmacología , Transducción de Señal/efectos de los fármacos , 4-Butirolactona/farmacología , Alanina Transaminasa/sangre , Fosfatasa Alcalina/sangre , Animales , Aspartato Aminotransferasas/sangre , Catalasa/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Modelos Animales de Enfermedad , Doxorrubicina , Glutatión/metabolismo , Malondialdehído/metabolismo , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Ratas , Sirtuina 1/metabolismo , Superóxido Dismutasa/metabolismo
20.
J Pers Med ; 11(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34834468

RESUMEN

Alzheimer's disease (AD) is a common neurodegenerative disorder accountable for dementia and cognitive dysfunction. The etiology of AD is complex and multifactorial in origin. The formation and deposition of amyloid-beta (Aß), hyperphosphorylated tau protein, neuroinflammation, persistent oxidative stress, and alteration in signaling pathways have been extensively explored among the various etiological hallmarks. However, more recently, the immunogenic regulation of AD has been identified, and macroglial activation is considered a limiting factor in its etiological cascade. Macroglial activation causes neuroinflammation via modulation of the NLRP3/NF-kB/p38 MAPKs pathway and is also involved in tau pathology via modulation of the GSK-3ß/p38 MAPK pathways. Additionally, microglial activation contributes to the discrete release of neurotransmitters and an altered neuronal synaptic plasticity. Therefore, activated microglial cells appear to be an emerging target for managing and treating AD. This review article discussed the pathology of microglial activation in AD and the role of various nanocarrier-based anti-Alzeihmenr's therapeutic approaches that can either reverse or inhibit this activation. Thus, as a targeted drug delivery system, nanocarrier approaches could emerge as a novel means to overcome existing AD therapy limitations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...