Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Photochem Photobiol B ; 259: 113017, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39226855

RESUMEN

As terahertz (THz) technology advances, the interaction between THz radiation and the living body, particularly its effects on the immune system, has attracted extensive attention but remains poorly understood. This study firstly elucidated that exposure to 3 THz-FEL radiation markedly suppressed contact hypersensitivity reactions in mice induced by DNFB, as evidenced by a reduction in ear thickness and a discernible recovery in the Th1/Th2 cell balance. 3 THz irradiation led to cellular stress in the irradiated skin locale, increasing the levels of IL-4 and IL-10 and modulating the activity and migration of dendritic cells and mast cells. Furthermore, THz irradiation precipitated a rapid alteration in the skin lipidome, altering several categories of bioactive lipids. These findings offer new insights into the immunomodulatory effects of THz radiation on living organisms and the potential underlying mechanisms, with implications for the development of therapeutic approaches in managing skin allergic diseases.


Asunto(s)
Interleucina-4 , Mastocitos , Piel , Radiación Terahertz , Animales , Ratones , Mastocitos/efectos de la radiación , Mastocitos/inmunología , Piel/efectos de la radiación , Interleucina-4/metabolismo , Células Dendríticas/efectos de la radiación , Células Dendríticas/inmunología , Interleucina-10/metabolismo , Dermatitis por Contacto/inmunología , Dermatitis por Contacto/etiología , Ratones Endogámicos BALB C , Dinitrofluorobenceno , Femenino , Células Th2/efectos de la radiación , Células Th2/inmunología , Células TH1/efectos de la radiación , Células TH1/inmunología
2.
Genes (Basel) ; 15(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39202405

RESUMEN

With the advancement of terahertz technology, unveiling the mysteries of terahertz has had a profound impact on the field of biomedicine. However, the lack of systematic comparisons for gene expression signatures may diminish the effectiveness and efficiency of identifying common mechanisms underlying terahertz effects across diverse research findings. We performed a comprehensive review and meta-analysis to compile patterns of gene expression profiles associated with THz radiation. Thorough bibliographic reviews were conducted, utilizing the PubMed, Embase, Web of Science, and ProQuest databases to extract references from published articles. Raw CEL files were obtained from Gene Expression Omnibus and preprocessed using Bioconductor packages. This systematic review (Registration No. CDR42024502937) resulted in a detailed analysis of 13 studies (14 papers). There are several possible mechanisms and pathways through which THz radiation could cause biological changes. While the established gene expression results are largely associated with immune response and inflammatory markers, other genes demonstrated transcriptional outcomes that may unravel unknown functions. The enrichment of genes primarily found networks associated with broader stress responses. Altogether, the findings showed that THz can induce a distinct transcriptomic profile that is not associated with a microthermal cellular response. However, it is impossible to pinpoint a single gene or family of genes that would accurately and reliably justify the patterns of gene expression response under THz exposure.


Asunto(s)
Radiación Terahertz , Radiación Terahertz/efectos adversos , Humanos , Transcriptoma , Animales , Perfilación de la Expresión Génica/métodos
3.
Mol Cell Neurosci ; 131: 103959, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39179164

RESUMEN

ß-Hydroxybutyrate (BHB) has been reported to exert neuroprotective functions and is considered a promising treatment for neurodegenerative diseases such as Parkinson's and Alzheimer's. Numerous studies have revealed BHB's multifaceted roles, including anti-senescence, anti-oxidative, and anti-inflammatory activities. However, the underlying mechanisms warrant further investigation. Astrocytes, the most abundant glial cells in the central nervous system, play a pivotal role in the development and progression of neurodegenerative diseases. While BHB is known to alter neuronal metabolism and function, its effects on astrocytes remain poorly understood. In this study, we conducted transcriptome sequencing analysis to identify differentially expressed genes induced by BHB in astrocytes and found that the gene Solute carrier family 1 member 3 (Slc1a3), encoding the glutamate transporter EAAT1, was significantly upregulated by BHB treatment. Cellular and animal-based experiments confirmed an increase in EAAT1 protein expression in primary astrocytes and the hippocampus of mice treated with BHB. This upregulation may be due to the activation of the Ca2+/CAMKII pathway by BHB. Furthermore, BHB improved astrocytes' glutamate uptake and partially restored neuronal viability impaired by glutamate-induced excitotoxicity when astrocytes were functionalized. Our results suggest that BHB may alleviate neuronal damage caused by excessive glutamate by enhancing the glutamate absorption and uptake capacity of astrocytes. This study proposes a novel mechanism for the neuroprotective effects of BHB and reinforces its beneficial impact on the central nervous system (CNS).

4.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892148

RESUMEN

The primary emphasis of photoimmunology is the impact of nonionizing radiation on the immune system. With the development of terahertz (THz) and sub-terahertz (sub-THz) technology, the biological effects of this emerging nonionizing radiation, particularly its influence on immune function, remain insufficiently explored but are progressively attracting attention. Here, we demonstrated that 0.1 sub-THz radiation can modulate the immune system and alleviate symptoms of arthritis in collagen-induced arthritis (CIA) mice through a nonthermal manner. The application of 0.1 sub-THz irradiation led to a decrease in proinflammatory factors within the joints and serum, reducing the levels of blood immune cells and the quantity of splenic CD4+ T cells. Notably, 0.1 sub-THz irradiation restored depleted Treg cells in CIA mice and re-established the Th17/Treg equilibrium. These findings suggested that sub-THz irradiation plays a crucial role in systemic immunoregulation. Further exploration of its immune modulation mechanisms revealed the anti-inflammatory properties of 0.1 sub-THz on LPS-stimulated skin keratinocytes. Through the reduction in NF-κB signaling and NLRP3 inflammasome activation, 0.1 sub-THz irradiation effectively decreased the production of inflammatory factors and immune-active substances, including IL-1ß and PGE2, in HaCaT cells. Consequently, 0.1 sub-THz irradiation mitigated the inflammatory response and contributed to the maintenance of immune tolerance in CIA mice. This research provided significant new evidence supporting the systemic impacts of 0.1 sub-THz radiation, particularly on the immune system. It also enhanced the field of photoimmunology and offered valuable insights into the potential biomedical applications of 0.1 sub-THz radiation for treating autoimmune diseases.


Asunto(s)
Artritis Experimental , Animales , Artritis Experimental/inmunología , Artritis Experimental/radioterapia , Artritis Experimental/patología , Ratones , Radiación Terahertz , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/inmunología , FN-kappa B/metabolismo , Ratones Endogámicos DBA , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de la radiación , Humanos , Transducción de Señal/efectos de la radiación , Queratinocitos/efectos de la radiación , Queratinocitos/inmunología , Queratinocitos/metabolismo
5.
World J Clin Cases ; 12(15): 2506-2521, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38817230

RESUMEN

BACKGROUND: The prevalence of non-alcoholic fatty liver (NAFLD) has increased recently. Subjects with NAFLD are known to have higher chance for renal function impairment. Many past studies used traditional multiple linear regression (MLR) to identify risk factors for decreased estimated glomerular filtration rate (eGFR). However, medical research is increasingly relying on emerging machine learning (Mach-L) methods. The present study enrolled healthy women to identify factors affecting eGFR in subjects with and without NAFLD (NAFLD+, NAFLD-) and to rank their importance. AIM: To uses three different Mach-L methods to identify key impact factors for eGFR in healthy women with and without NAFLD. METHODS: A total of 65535 healthy female study participants were enrolled from the Taiwan MJ cohort, accounting for 32 independent variables including demographic, biochemistry and lifestyle parameters (independent variables), while eGFR was used as the dependent variable. Aside from MLR, three Mach-L methods were applied, including stochastic gradient boosting, eXtreme gradient boosting and elastic net. Errors of estimation were used to define method accuracy, where smaller degree of error indicated better model performance. RESULTS: Income, albumin, eGFR, High density lipoprotein-Cholesterol, phosphorus, forced expiratory volume in one second (FEV1), and sleep time were all lower in the NAFLD+ group, while other factors were all significantly higher except for smoking area. Mach-L had lower estimation errors, thus outperforming MLR. In Model 1, age, uric acid (UA), FEV1, plasma calcium level (Ca), plasma albumin level (Alb) and T-bilirubin were the most important factors in the NAFLD+ group, as opposed to age, UA, FEV1, Alb, lactic dehydrogenase (LDH) and Ca for the NAFLD- group. Given the importance percentage was much higher than the 2nd important factor, we built Model 2 by removing age. CONCLUSION: The eGFR were lower in the NAFLD+ group compared to the NAFLD- group, with age being was the most important impact factor in both groups of healthy Chinese women, followed by LDH, UA, FEV1 and Alb. However, for the NAFLD- group, TSH and SBP were the 5th and 6th most important factors, as opposed to Ca and BF in the NAFLD+ group.

6.
ACS Appl Mater Interfaces ; 16(17): 22482-22492, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651802

RESUMEN

Herein, we present the preparation and properties of an ultrathin, mechanically robust, quasi-solid composite electrolyte (SEO-QSCE) for solid-state lithium metal battery (SLB) from a well-defined polystyrene-b-poly(ethylene oxide) diblock copolymer (SEO), Li6.75La3Zr1.75Ta0.25O12 nanofiller, and fluoroethylene carbonate plasticizer. Compared with the ordered lamellar microphase separation of SEO, the SEO-QSCE displays bicontinuous phases, consisting of a Li+ ion conductive poly(ethylene oxide) domain and a mechanically robust framework of the polystyrene domain. Therefore, the 12 µm-thick SEO-QSCE membrane exhibits an exceptional ionic conductivity of 1.3 × 10-3 S cm-1 at 30 °C, along with a remarkable tensile strength of 5.1 MPa and an elastic modulus of 2.7 GPa. The high mechanical robustness and the self-generated LiF-rich SEI enable the SEO-QSCE to have an extraordinary lithium dendrite prohibition effect. The SLB of Li|SEO-QSCE|LiFePO4 reveals superior cycling performances at 30 °C for over 600 cycles, maintaining an initial discharge capacity of 145 mAh g-1 and a remarkable capacity retention of 81% (117 mAh g-1) after 400 cycles at 0.5 C. The high-voltage SLB of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 displays good cycling stability for over 150 cycles at 30 °C. Moreover, the exceptional robustness of SEO-QSCE enables the high-voltage solid-state pouch cell of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 with high flexibility and excellent safety features. The current investigation delivers a promising and innovative approach for preparing quasi-solid electrolytes with features of ultrathin design, mechanical robustness, and exceptional electrochemical performance for high-voltage SLBs.

7.
Adv Mater ; 36(23): e2314063, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444248

RESUMEN

Polymer/ceramic-based composite solid electrolytes (CSE) are promising candidates for all-solid-state lithium metal batteries (SLBs), benefiting from the combined mechanical robustness of polymeric electrolytes and the high ionic conductivity of ceramic electrolytes. However, the interfacial instability and poorly understood interphases of CSE hinder their application in high-voltage SLBs. Herein, a simple but effective CSE that stabilizes high-voltage SLBs by forming multiple intermolecular coordination interactions between polyester and ceramic electrolytes is discovered. The multiple coordination between the carbonyl groups in poly(ε-caprolactone) and the fluorosulfonyl groups in anions with Li6.5La3Zr1.5Ta0.5O12 nanoparticles is directly visualized by cryogenic transmission electron microscopy and further confirmed by theoretical calculation. Importantly, the multiple coordination in CSE not only prevents the continuous decomposition of polymer skeleton by shielding the vulnerable carbonyl sites but also establishes stable inorganic-rich interphases through preferential decomposition of anions. The stable CSE and its inorganic-rich interphases enable Li||Li symmetric cells with an exceptional lifespan of over 4800 h without dendritic shorting at 0.1 mA cm-2. Moreover, the high-voltage SLB with LiNi0.5Co0.2Mn0.3O2 cathode displays excellent cycling stability over 1100 cycles at a 1C charge/discharge rate. This work reveals the underlying mechanism behind the excellent stability of coordinating composite electrolytes and interfaces in high-voltage SLBs.

8.
Small ; 20(31): e2311812, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38453675

RESUMEN

Local high concentration electrolytes (LHCEs) have been proved to be one of the most promising systems to stabilize both high voltage cathodes and Li metal anode for next-generation batteries. However, the solvation structures and interactions among different species in LHCEs are still convoluted, which bottlenecks the further breakthrough on electrolyte development. Here, it is demonstrated that the hydrogen bonding interaction between diluent and solvent is crucial for the construction of LHCEs and corresponding interphase chemistries. The 2,2,2-trifluoroethyl trifluoromethane sulfonate (TFSF) is selected as diluent with the solvent dimethoxy-ethane (DME) to prepare a non-flammable LHCE for high voltage LMBs. This is first find that the hydrogen bonding interaction between TFSF and DME solvent tailors the electrolyte solvation structures by weakening the coordination of DME molecules to Li+ cations and allows more participation of anions in the first solvation shell, leading to the formation of aggregates (AGGs) clusters which are conducive to generating inorganic solid/cathodic electrolyte interphases (SEI/CEIs). The proposed TFSF based LHCE enables the Li||NCM811 (LiNi0.8Mn0.1O2) batteries to realize >80% capacity retention with a high average Coulombic efficiency of 99.8% for 230 cycles under aggressive conditions (NCM811 cathode: 3.4 mAh cm-2, cut-off voltage: 4.4 V, and 20 µm Li foil).

9.
iScience ; 27(4): 109391, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38532884

RESUMEN

The biosafety of terahertz (THz) waves has emerged as a new area of concern with the gradual application of terahertz radiation. Even though many studies have been conducted to investigate the influence of THz radiation on living organisms, the biological effects of terahertz waves have not yet been fully revealed. In this study, Caenorhabditis elegans (C. elegans) was used to evaluate the biological consequences of whole-body exposure to 0.263 THz irradiation. The integration of transcriptome sequencing and behavioral tests of C. elegans revealed that high-power THz irradiation damaged the epidermal ultrastructures, inhibited the expression of the cuticle collagen genes, and impaired the movement of C. elegans. Moreover, the genes involved in the immune system and the neural system were dramatically down-regulated by high-power THz irradiation. Our findings offer fresh perspectives on the biological impacts of high-power THz radiation that could cause epidermal damage and provoke a systemic response.

10.
Antioxidants (Basel) ; 13(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38397784

RESUMEN

Psoriasis is one of several chronic inflammatory skin diseases with a high rate of recurrence, and its pathogenesis remains unclear. Nicotinamide mononucleotide (NMN), as an important precursor of nicotinamide adenine dinucleotide (NAD+), has been reported to be a promising agent in treating various diseases, its positive effects including those induced via its anti-inflammatory and antioxidant properties. For this reason, we have aimed to explore the possible role of NMN in the treatment of psoriasis. Psoriasis models were constructed with imiquimod (IMQ) stimulation for 5 days in vivo and with M5 treatment in keratinocyte cell lines in vitro. NMN treatment during the IMQ application period markedly attenuated excess epidermal proliferation, splenomegaly, and inflammatory responses. According to GEO databases, Sirtuin1 (SIRT1) levels significantly decreased in psoriasis patients' lesion tissues; this was also the case in the IMQ-treated mice, while NMN treatment reversed the SIRT1 decline in the mouse model. Moreover, NMN supplementation also improved the prognoses of the mice after IMQ stimulation, compared to the untreated group with elevated SIRT1 levels. In HEKa and HaCaT cells, the co-culturing of NMN and M5 significantly decreased the expression levels of proinflammation factors, the phosphorylation of NF-κB, stimulator of interferon genes (STING) levels, and reactive oxygen species levels. NMN treatment also recovered the decrease in mitochondrial membrane potential and respiration ability and reduced mtDNA in the cytoplasm, leading to the inhibition of autoimmune inflammation. The knockdown of SIRT1 in vitro eliminated the protective and therapeutic effects of NMN against M5. To conclude, our results indicate that NMN protects against IMQ-induced psoriatic inflammation, oxidative stress, and mitochondrial dysfunction by activating the SIRT1 pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA