Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mult Scler Relat Disord ; 86: 105597, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598954

RESUMEN

BACKGROUND: Epstein barr virus (EBV) infection of B cells is now understood to be one of the triggering events for the development of Multiple Sclerosis (MS), a progressive immune-mediated disease of the central nervous system. EBV infection is also linked to expression of human endogenous retroviruses (HERVs) of the HERV-W group, a further risk factor for the development of MS. Ocrelizumab is a high-potency disease-modifying treatment (DMT) for MS, which depletes B cells by targeting CD20. OBJECTIVES: We studied the effects of ocrelizumab on gene expression in peripheral blood mononuclear cells (PBMC) from paired samples from 20 patients taken prior to and 6 months after beginning ocrelizumab therapy. We hypothesised that EBV and HERV-W loads would be lower in post-treatment samples. METHODS: Samples were collected in Paxgene tubes, subject to RNA extraction and Illumina paired end short read mRNA sequencing with mapping of sequence reads to the human genome using Salmon and differential gene expression compared with DeSeq2. Mapping was also performed separately to the HERV-D database of HERV sequences and the EBV reference sequence. RESULTS: Patient samples were more strongly clustered by individual rather than disease type (relapsing/remitting or primary progressive), treatment (pre and post), age, or sex. Fourteen genes, all clearly linked to B cell function were significantly down regulated in the post treatment samples. Interestingly only one pre-treatment sample had detectable EBV RNA and there were no significant differences in HERV expression (of any group) between pre- and post-treatment samples. CONCLUSIONS: While EBV and HERV expression are clearly linked to triggering MS pathogenesis, it does not appear that high level expression of these viruses is a part of the ongoing disease process or that changes in virus load are associated with ocrelizumab treatment.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Linfocitos B , Retrovirus Endógenos , Leucocitos Mononucleares , Humanos , Retrovirus Endógenos/efectos de los fármacos , Femenino , Masculino , Adulto , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Linfocitos B/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/farmacología , Persona de Mediana Edad , Factores Inmunológicos/farmacología , ARN Viral , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/virología , Esclerosis Múltiple/inmunología , Herpesvirus Humano 4 , Expresión Génica/efectos de los fármacos
2.
Front Immunol ; 14: 1161848, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033972

RESUMEN

Myeloid derived suppressor cells (MDSCs) are a heterogenous population of myeloid cells derived from monocyte and granulocyte precursors. They are pathologically expanded in conditions of ongoing inflammation where they function to suppress both innate and adaptive immunity. They are subdivided into three distinct subsets: monocytic (M-) MDSC, polymorphonuclear (or neutrophilic) (PMN-) MDSC and early-stage (e-) MDSC that may exhibit differential function in different pathological scenarios. However, in cancer they are associated with inhibition of the anti-tumour immune response and are universally associated with a poor prognosis. Seven human viruses classified as Group I carcinogenic agents are jointly responsible for nearly one fifth of all human cancers. These viruses represent a large diversity of species, including DNA, RNA and retroviridae. They include the human gammaherpesviruses (Epstein Barr virus (EBV) and Kaposi's Sarcoma-Associated Herpesvirus (KSHV), members of the high-risk human papillomaviruses (HPVs), hepatitis B and C (HBV, HCV), Human T cell leukaemia virus (HTLV-1) and Merkel cell polyomavirus (MCPyV). Each of these viruses encode an array of different oncogenes that perturb numerous cellular pathways that ultimately, over time, lead to cancer. A prerequisite for oncogenesis is therefore establishment of chronic infection whereby the virus persists in the host cells without being eradicated by the antiviral immune response. Although some of the viruses can directly modulate the immune response to enable persistence, a growing body of evidence suggests the immune microenvironment is modulated by expansions of MDSCs, driven by viral persistence and oncogenesis. It is likely these MDSCs play a role in loss of immune recognition and function and it is therefore essential to understand their phenotype and function, particularly given the increasing importance of immunotherapy in the modern arsenal of anti-cancer therapies. This review will discuss the role of MDSCs in viral oncogenesis. In particular we will focus upon the mechanisms thought to drive the MDSC expansions, the subsets expanded and their impact upon the immune microenvironment. Importantly we will explore how MDSCs may modulate current immunotherapies and their impact upon the success of future immune-based therapies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Células Supresoras de Origen Mieloide , Neoplasias , Virus , Humanos , Herpesvirus Humano 4 , Carcinogénesis , Microambiente Tumoral
3.
Front Neurol ; 13: 887794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812097

RESUMEN

There is increasing evidence suggesting that Epstein-Barr virus infection is a causative factor of multiple sclerosis (MS). Epstein-Barr virus (EBV) is a human herpesvirus, Human Gammaherpesvirus 4. EBV infection shows two peaks: firstly, during early childhood and, secondly during the teenage years. Approximately, 90-95% of adults have been infected with EBV and for many this will have been a subclinical event. EBV infection can be associated with significant morbidity and mortality; for example, primary infection in older children or adults is the leading cause of infectious mononucleosis (IM). A disrupted immune response either iatrogenically induced or through genetic defects can result in lymphoproliferative disease. Finally, EBV is oncogenic and is associated with several malignancies. For these reasons, vaccination to prevent the damaging aspects of EBV infection is an attractive intervention. No EBV vaccines have been licensed and the prophylactic vaccine furthest along in clinical trials contains the major virus glycoprotein gp350. In a phase 2 study, the vaccine reduced the rate of IM by 78% but did not prevent EBV infection. An EBV vaccine to prevent IM in adolescence or young adulthood is the most likely population-based vaccine strategy to be tested and adopted. National registry studies will need to be done to track the incidence of MS in EBV-vaccinated and unvaccinated people to see an effect of the vaccine on MS. Assessment of vaccine efficacy with MS being a delayed consequence of EBV infection with the average age of onset being approximately 30 years of age represents multiple challenges.

4.
Front Immunol ; 12: 629193, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732251

RESUMEN

Hyper-induction of pro-inflammatory cytokines, also known as a cytokine storm or cytokine release syndrome (CRS), is one of the key aspects of the currently ongoing SARS-CoV-2 pandemic. This process occurs when a large number of innate and adaptive immune cells activate and start producing pro-inflammatory cytokines, establishing an exacerbated feedback loop of inflammation. It is one of the factors contributing to the mortality observed with coronavirus 2019 (COVID-19) for a subgroup of patients. CRS is not unique to the SARS-CoV-2 infection; it was prevalent in most of the major human coronavirus and influenza A subtype outbreaks of the past two decades (H5N1, SARS-CoV, MERS-CoV, and H7N9). With a comprehensive literature search, we collected changing the cytokine levels from patients upon infection with the viral pathogens mentioned above. We analyzed published patient data to highlight the conserved and unique cytokine responses caused by these viruses. Our curation indicates that the cytokine response induced by SARS-CoV-2 is different compared to other CRS-causing respiratory viruses, as SARS-CoV-2 does not always induce specific cytokines like other coronaviruses or influenza do, such as IL-2, IL-10, IL-4, or IL-5. Comparing the collated cytokine responses caused by the analyzed viruses highlights a SARS-CoV-2-specific dysregulation of the type-I interferon (IFN) response and its downstream cytokine signatures. The map of responses gathered in this study could help specialists identify interventions that alleviate CRS in different diseases and evaluate whether they could be used in the COVID-19 cases.


Asunto(s)
COVID-19/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Índice de Severidad de la Enfermedad , COVID-19/sangre , COVID-19/patología , COVID-19/virología , Síndrome de Liberación de Citoquinas/sangre , Síndrome de Liberación de Citoquinas/virología , Citocinas/sangre , Humanos , Inflamación/inmunología , Gripe Humana/sangre , Gripe Humana/virología , Síndrome Respiratorio Agudo Grave/sangre , Síndrome Respiratorio Agudo Grave/virología
5.
PLoS Pathog ; 17(2): e1009210, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33596248

RESUMEN

Epstein-Barr virus (EBV) is best known for infection of B cells, in which it usually establishes an asymptomatic lifelong infection, but is also associated with the development of multiple B cell lymphomas. EBV also infects epithelial cells and is associated with all cases of undifferentiated nasopharyngeal carcinoma (NPC). EBV is etiologically linked with at least 8% of gastric cancer (EBVaGC) that comprises a genetically and epigenetically distinct subset of GC. Although we have a very good understanding of B cell entry and lymphomagenesis, the sequence of events leading to EBVaGC remains poorly understood. Recently, ephrin receptor A2 (EPHA2) was proposed as the epithelial cell receptor on human cancer cell lines. Although we confirm some of these results, we demonstrate that EBV does not infect healthy adult stem cell-derived gastric organoids. In matched pairs of normal and cancer-derived organoids from the same patient, EBV only reproducibly infected the cancer organoids. While there was no clear pattern of differential expression between normal and cancer organoids for EPHA2 at the RNA and protein level, the subcellular location of the protein differed markedly. Confocal microscopy showed EPHA2 localization at the cell-cell junctions in primary cells, but not in cancer cell lines. Furthermore, histologic analysis of patient tissue revealed the absence of EBV in healthy epithelium and presence of EBV in epithelial cells from inflamed tissue. These data suggest that the EPHA2 receptor is not accessible to EBV on healthy gastric epithelial cells with intact cell-cell contacts, but either this or another, yet to be identified receptor may become accessible following cellular changes induced by inflammation or transformation, rendering changes in the cellular architecture an essential prerequisite to EBV infection.


Asunto(s)
Células Epiteliales/virología , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Organoides/virología , Receptor EphA2/metabolismo , Estómago/virología , Internalización del Virus , Células Epiteliales/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Humanos , Organoides/metabolismo , Estómago/fisiología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/virología
6.
Blood ; 137(2): 203-215, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33443553

RESUMEN

Chronic active Epstein-Barr virus (CAEBV) typically presents as persistent infectious mononucleosis-like disease and/or hemophagocytic lymphohistocytosis (HLH), reflecting ectopic Epstein-Barr virus (EBV) infection and lymphoproliferation of T and/or NK cells. Clinical behavior ranges from indolent, stable disease through to rapidly progressive, life-threatening disease. Although it is thought the chronicity and/or progression reflect an escape from immune control, very little is known about the phenotype and function of the infected cells vs coresident noninfected population, nor about the mechanisms that could underpin their evasion of host immune surveillance. To investigate these questions, we developed a multicolor flow cytometry technique combining phenotypic and functional marker staining with in situ hybridization for the EBV-encoded RNAs (EBERs) expressed in every infected cell. This allows the identification, phenotyping, and functional comparison of infected (EBERPOS) and noninfected (EBERNEG) lymphocyte subset(s) in patients' blood samples ex vivo. We have characterized CAEBV and HLH cases with monoclonal populations of discrete EBV-activated T-cell subsets, in some cases accompanied by EBV-activated NK-cell subsets, with longitudinal data on the infected cells' progression despite standard steroid-based therapy. Given that cytotoxic CD8+ T cells with relevant EBV antigen specificity were detectable in the blood of the best studied patient, we searched for means whereby host surveillance might be impaired. This revealed a unique feature in almost every patient with CAEBV studied: the presence of large numbers of myeloid-derived suppressor cells that exhibited robust inhibition of T-cell growth. We suggest that their influence is likely to explain the host's failure to contain EBV-positive T/NK-cell proliferation.


Asunto(s)
Infecciones por Virus de Epstein-Barr/inmunología , Trastornos Linfoproliferativos/inmunología , Trastornos Linfoproliferativos/virología , Células Supresoras de Origen Mieloide/inmunología , Subgrupos de Linfocitos T/virología , Adulto , Citometría de Flujo/métodos , Herpesvirus Humano 4/inmunología , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
7.
Blood Adv ; 4(19): 4775-4787, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33017468

RESUMEN

Epstein-Barr virus (EBV)-associated T- and natural killer (NK)-cell malignancies, such as extranodal NK-/T-cell lymphoma (ENKTL), exhibit high chemoresistance and, accordingly, such patients have a poor prognosis. The rare nature of such cancers and nonmalignant T/NK lymphoproliferative disorders, such as chronic active EBV (CAEBV), has limited our understanding of the pathogenesis of these diseases. Here, we characterize a panel of ENKTL- and CAEBV-derived cell lines that had been established from human tumors to be used as preclinical models of these diseases. These cell lines were interleukin-2 dependent and found to carry EBV in a latency II gene-expression pattern. All cell lines demonstrated resistance to cell death induction by DNA damage-inducing agents, the current standard of care for patients with these malignancies. This resistance was not correlated with the function of the multidrug efflux pump, P-glycoprotein. However, apoptotic cell death could be consistently induced following treatment with A-1331852, a BH3-mimetic drug that specifically inhibits the prosurvival protein BCL-XL. A-1331852-induced apoptosis was most efficacious when prosurvival MCL-1 was additionally targeted, either by BH3-mimetics or genetic deletion. Xenograft models established from the ENKTL cell line SNK6 provided evidence that A-1331852 treatment could be therapeutically beneficial in vivo. The data here suggest that therapeutic targeting of BCL-XL would be effective for patients with EBV-driven T/NK proliferative diseases, however, MCL-1 could be a potential resistance factor.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Preparaciones Farmacéuticas , Apoptosis , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Herpesvirus Humano 4 , Humanos , Células Asesinas Naturales
8.
J Gen Virol ; 101(10): 1090-1102, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32692647

RESUMEN

Some free fatty acids derived from milk and vegetable oils are known to have potent antiviral and antibacterial properties. However, therapeutic applications of short- to medium-chain fatty acids are limited by physical characteristics such as immiscibility in aqueous solutions. We evaluated a novel proprietary formulation based on an emulsion of short-chain caprylic acid, ViroSAL, for its ability to inhibit a range of viral infections in vitro and in vivo. In vitro, ViroSAL inhibited the enveloped viruses Epstein-Barr, measles, herpes simplex, Zika and orf parapoxvirus, together with Ebola, Lassa, vesicular stomatitis and severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) pseudoviruses, in a concentration- and time-dependent manner. Evaluation of the components of ViroSAL revealed that caprylic acid was the main antiviral component; however, the ViroSAL formulation significantly inhibited viral entry compared with caprylic acid alone. In vivo, ViroSAL significantly inhibited Zika and Semliki Forest virus replication in mice following the inoculation of these viruses into mosquito bite sites. In agreement with studies investigating other free fatty acids, ViroSAL had no effect on norovirus, a non-enveloped virus, indicating that its mechanism of action may be surfactant disruption of the viral envelope. We have identified a novel antiviral formulation that is of great interest for the prevention and/or treatment of a broad range of enveloped viruses, particularly those of the skin and mucosal surfaces.


Asunto(s)
Antivirales , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Virus , Infección por el Virus Zika , Virus Zika , Animales , Antivirales/farmacología , Lípidos , Ratones , Internalización del Virus
9.
Front Oncol ; 9: 713, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31448229

RESUMEN

Epstein-Barr virus (EBV), a gamma-1 herpesvirus, is carried as a life-long asymptomatic infection by the great majority of individuals in all human populations. Yet this seemingly innocent virus is aetiologically linked to two pre-malignant lymphoproliferative diseases (LPDs) and up to nine distinct human tumors; collectively these have a huge global impact, being responsible for some 200,000 new cases of cancer arising worldwide each year. EBV replicates in oral epithelium but persists as a latent infection within the B cell system and several of its diseases are indeed of B cell origin; these include B-LPD of the immunocompromised, Hodgkin Lymphoma (HL), Burkitt Lymphoma (BL), Diffuse Large B cell Lymphoma (DLBCL) and two rarer tumors associated with profound immune impairment, plasmablastic lymphoma (PBL) and primary effusion lymphoma (PEL). Surprisingly, the virus is also linked to tumors arising in other cellular niches which, rather than being essential reservoirs of virus persistence in vivo, appear to represent rare cul-de-sacs of latent infection. These non-B cell tumors include LPDs and malignant lymphomas of T or NK cells, nasopharyngeal carcinoma (NPC) and gastric carcinoma of epithelial origin, and leiomyosarcoma, a rare smooth muscle cell tumor of the immunocompromised. Here we describe the main characteristics of these tumors, their distinct epidemiologies, histological features and degrees of EBV association, then consider how their different patterns of EBV latency may reflect the alternative latency programmes through which the virus first colonizes and then persists in immunocompetent host. For each tumor, we discuss current understanding of EBV's role in the oncogenic process, the identity (where known) of host genetic and environmental factors predisposing tumor development, and the recent evidence from cancer genomics identifying somatic changes that either complement or in some cases replace the contribution of the virus. Thereafter we look for possible connections between the pathogenesis of these apparently different malignancies and point to new research areas where insights may be gained.

10.
EBioMedicine ; 47: 235-246, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31462392

RESUMEN

BACKGROUND: Targeting of MDSCs is a major clinical challenge in the era of immunotherapy. Antibodies which deplete MDSCs in murine models can reactivate T cell responses. In humans such approaches have not developed due to difficulties in identifying targets amenable to clinical translation. METHODS: RNA-sequencing of M-MDSCs and G-MDSCs from cancer patients was undertaken. Flow cytometry and immunohistochemistry of blood and tumours determined MDSC CD33 expression. MDSCs were treated with Gemtuzumab ozogamicin and internalisation kinetics, and cell death mechanisms determined by flow cytometry, confocal microscopy and electron microscopy. Effects on T cell proliferation and CAR-T cell anti-tumour cytotoxicity were identified in the presence of Gemtuzumab ozogamicin. FINDINGS: RNA-sequencing of human M-MDSCs and G-MDSCs identified transcriptomic differences, but that CD33 is a common surface marker. Flow cytometry indicated CD33 expression is higher on M-MDSCs, and CD33+ MDSCs are found in the blood and tumours regardless of cancer subtype. Treatment of human MDSCs leads to Gemtuzumab ozogamicin internalisation, increased p-ATM, and cell death; restoring T cell proliferation. Anti-GD2-/mesothelin-/EGFRvIII-CAR-T cell activity is enhanced in combination with the anti-MDSC effects of Gemtuzumab ozogamicin. INTERPRETATION: The study identifies that M-MDSCs and G-MDSCs are transcriptomically different but CD33 is a therapeutic target on peripheral and infiltrating MDSCs across cancer subtypes. The immunotoxin Gemtuzumab ozogamicin can deplete MDSCs providing a translational approach to reactivate T cell and CAR-T cell responses against multiple cancers. In the rare conditions of HLH/MAS gemtuzumab ozogamicin provides a novel anti-myeloid strategy. FUND: This work was supported by Cancer Research UK, CCLG, Treating Children with Cancer, and the alumni and donors to the University of Birmingham.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Gemtuzumab/farmacología , Células Supresoras de Origen Mieloide/efectos de los fármacos , Neoplasias/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores , Gemtuzumab/uso terapéutico , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Inmunofenotipificación , Inmunoterapia , Modelos Biológicos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Linfocitos T/metabolismo , Transcriptoma
11.
Nucleic Acids Res ; 46(7): 3707-3725, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29385536

RESUMEN

Response gene to complement-32 (RGC-32) activates cyclin-dependent kinase 1, regulates the cell cycle and is deregulated in many human tumours. We previously showed that RGC-32 expression is upregulated by the cancer-associated Epstein-Barr virus (EBV) in latently infected B cells through the relief of translational repression. We now show that EBV infection of naïve primary B cells also induces RGC-32 protein translation. In EBV-immortalised cell lines, we found that RGC-32 depletion resulted in cell death, indicating a key role in B cell survival. Studying RGC-32 translational control in EBV-infected cells, we found that the RGC-32 3'untranslated region (3'UTR) mediates translational repression. Repression was dependent on a single Pumilio binding element (PBE) adjacent to the polyadenylation signal. Mutation of this PBE did not affect mRNA cleavage, but resulted in increased polyA tail length. Consistent with Pumilio-dependent recruitment of deadenylases, we found that depletion of Pumilio in EBV-infected cells increased RGC-32 protein expression and polyA tail length. The extent of Pumilio binding to the endogenous RGC-32 mRNA in EBV-infected cell lines also correlated with RGC-32 protein expression. Our data demonstrate the importance of RGC-32 for the survival of EBV-immortalised B cells and identify Pumilio as a key regulator of RGC-32 translation.


Asunto(s)
Linfoma de Burkitt/genética , Proteínas de Ciclo Celular/genética , Herpesvirus Humano 4/genética , Proteínas Musculares/genética , Proteínas del Tejido Nervioso/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Regiones no Traducidas 3'/genética , Linfocitos B/virología , Linfoma de Burkitt/patología , Linfoma de Burkitt/virología , Proteína Quinasa CDC2/genética , Ciclo Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Herpesvirus Humano 4/patogenicidad , Humanos , Poli A/genética , Unión Proteica/genética , Señales de Poliadenilación de ARN 3'/genética
12.
Philos Trans R Soc Lond B Biol Sci ; 372(1732)2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28893938

RESUMEN

Epstein-Barr virus (EBV), originally discovered through its association with Burkitt lymphoma, is now aetiologically linked to a remarkably wide range of lymphoproliferative lesions and malignant lymphomas of B-, T- and NK-cell origin. Some occur as rare accidents of virus persistence in the B lymphoid system, while others arise as a result of viral entry into unnatural target cells. The early finding that EBV is a potent B-cell growth transforming agent hinted at a simple oncogenic mechanism by which this virus could promote lymphomagenesis. In reality, the pathogenesis of EBV-associated lymphomas involves a complex interplay between different patterns of viral gene expression and cellular genetic changes. Here we review recent developments in our understanding of EBV-associated lymphomagenesis in both the immunocompetent and immunocompromised host.This article is part of the themed issue 'Human oncogenic viruses'.


Asunto(s)
Carcinogénesis , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Huésped Inmunocomprometido , Linfoma/virología , Infecciones por Virus de Epstein-Barr/inmunología , Humanos , Inmunocompetencia , Linfoma/inmunología
13.
JCI Insight ; 2(16)2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28814669

RESUMEN

The maintenance of peripheral naive T lymphocytes in humans is dependent on their homeostatic division, not continuing emigration from the thymus, which undergoes involution with age. However, postthymic maintenance of naive T cells is still poorly understood. Previously we reported that recent thymic emigrants (RTEs) are contained in CD31+CD25- naive T cells as defined by their levels of signal joint T cell receptor rearrangement excision circles (sjTRECs). Here, by differential gene expression analysis followed by protein expression and functional studies, we define that the naive T cells having divided the least since thymic emigration express complement receptors (CR1 and CR2) known to bind complement C3b- and C3d-decorated microbial products and, following activation, produce IL-8 (CXCL8), a major chemoattractant for neutrophils in bacterial defense. We also observed an IL-8-producing memory T cell subpopulation coexpressing CR1 and CR2 and with a gene expression signature resembling that of RTEs. The functions of CR1 and CR2 on T cells remain to be determined, but we note that CR2 is the receptor for Epstein-Barr virus, which is a cause of T cell lymphomas and a candidate environmental factor in autoimmune disease.

14.
Elife ; 52016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27490482

RESUMEN

Lymphomagenesis in the presence of deregulated MYC requires suppression of MYC-driven apoptosis, often through downregulation of the pro-apoptotic BCL2L11 gene (Bim). Transcription factors (EBNAs) encoded by the lymphoma-associated Epstein-Barr virus (EBV) activate MYC and silence BCL2L11. We show that the EBNA2 transactivator activates multiple MYC enhancers and reconfigures the MYC locus to increase upstream and decrease downstream enhancer-promoter interactions. EBNA2 recruits the BRG1 ATPase of the SWI/SNF remodeller to MYC enhancers and BRG1 is required for enhancer-promoter interactions in EBV-infected cells. At BCL2L11, we identify a haematopoietic enhancer hub that is inactivated by the EBV repressors EBNA3A and EBNA3C through recruitment of the H3K27 methyltransferase EZH2. Reversal of enhancer inactivation using an EZH2 inhibitor upregulates BCL2L11 and induces apoptosis. EBV therefore drives lymphomagenesis by hijacking long-range enhancer hubs and specific cellular co-factors. EBV-driven MYC enhancer activation may contribute to the genesis and localisation of MYC-Immunoglobulin translocation breakpoints in Burkitt's lymphoma.


Asunto(s)
Proteína 11 Similar a Bcl2/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Silenciador del Gen , Herpesvirus Humano 4/enzimología , Herpesvirus Humano 4/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Transcripcional , Proteína 11 Similar a Bcl2/genética , ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
15.
PLoS Pathog ; 12(4): e1005549, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27096949

RESUMEN

Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three "first wave" proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that "first wave" antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos B/virología , Linfocitos T CD8-positivos/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Activación de Linfocitos/inmunología , Ensayo de Immunospot Ligado a Enzimas , Epítopos de Linfocito T/inmunología , Humanos , Immunoblotting , Vacunas Virales/inmunología
16.
Blood ; 126(25): 2665-75, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26450987

RESUMEN

Allogeneic stem cell transplantation (allo-HSCT) provides a unique opportunity to track Epstein-Barr virus (EBV) infection in the context of the reconstituting B-cell system. Although many allo-HSCT recipients maintain low or undetectable levels of EBV DNA posttransplant, a significant proportion exhibit elevated and rapidly increasing EBV loads which, if left untreated, may lead to potentially fatal EBV-associated posttransplant lymphoproliferative disease. Intriguingly, this high-level EBV reactivation typically arises in the first 3 months posttransplant, at a time when the peripheral blood contains low numbers of CD27+ memory cells which are the site of EBV persistence in healthy immunocompetent donors. To investigate this apparent paradox, we prospectively monitored EBV levels and B-cell reconstitution in a cohort of allo-HSCT patients for up to 12 months posttransplant. In patients with low or undetectable levels of EBV, the circulating B-cell pool consisted predominantly of transitional and naive cells, with a marked deficiency of CD27+ memory cells which lasted >12 months. However, among patients with high EBV loads, there was a significant increase in both the proportion and number of CD27+ memory B cells. Analysis of sorted CD27+ memory B cells from these patients revealed that this population was preferentially infected with EBV, expressed EBV latent transcripts associated with B-cell growth transformation, had a plasmablastic phenotype, and frequently expressed the proliferation marker Ki-67. These findings suggest that high-level EBV reactivation following allo-HSCT may drive the expansion of latently infected CD27+ B lymphoblasts in the peripheral blood.


Asunto(s)
Linfocitos B/virología , Transformación Celular Viral/fisiología , Infecciones por Virus de Epstein-Barr/complicaciones , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Herpesvirus Humano 4/fisiología , Activación Viral/inmunología , Adulto , Anciano , Subgrupos de Linfocitos B/virología , ADN Viral/sangre , Femenino , Humanos , Memoria Inmunológica/inmunología , Trastornos Linfoproliferativos/virología , Masculino , Persona de Mediana Edad , Trasplante Homólogo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Carga Viral/inmunología
17.
Virology ; 474: 117-30, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25463610

RESUMEN

We have validated a flexible, high-throughput and relatively inexpensive RT-QPCR array platform for absolute quantification of Epstein-Barr virus transcripts in different latent and lytic infection states. Several novel observations are reported. First, during infection of normal B cells, Wp-initiated latent gene transcripts remain far more abundant following activation of the Cp promoter than was hitherto suspected. Second, EBNA1 transcript levels are remarkably low in all forms of latency, typically ranging from 1 to 10 transcripts per cell. EBNA3A, -3B and -3C transcripts are likewise very low in Latency III, typically at levels similar to or less than EBNA1 transcripts. Thirdly, a subset of lytic gene transcripts is detectable in Burkitt lymphoma lines at low levels, including: BILF1, which has oncogenic properties, and the poorly characterized LF1, LF2 and LF3 genes. Analysis of seven African BL biopsies confirmed this transcription profile but additionally revealed significant expression of LMP2 transcripts.


Asunto(s)
Herpesvirus Humano 4/genética , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Viral/análisis , ARN Viral/genética , Linfocitos B/virología , Linfoma de Burkitt/virología , Línea Celular Tumoral , Antígenos Nucleares del Virus de Epstein-Barr/genética , Regulación Viral de la Expresión Génica , Genes Virales , Humanos , Receptores Acoplados a Proteínas G/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transcripción Genética , Proteínas Virales/genética , Virión/genética , Latencia del Virus/genética
18.
J Pathol ; 235(2): 312-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25294567

RESUMEN

Since the discovery in 1964 of the Epstein-Barr virus (EBV) in African Burkitt lymphoma, this virus has been associated with a remarkably diverse range of cancer types. Because EBV persists in the B cells of the asymptomatic host, it can easily be envisaged how it contributes to the development of B-cell lymphomas. However, EBV is also found in other cancers, including T-cell/natural killer cell lymphomas and several epithelial malignancies. Explaining the aetiological role of EBV is challenging, partly because the virus probably contributes differently to each tumour and partly because the available disease models cannot adequately recapitulate the subtle variations in the virus-host balance that exist between the different EBV-associated cancers. A further challenge is to identify the co-factors involved; because most persistently infected individuals will never develop an EBV-associated cancer, the virus cannot be working alone. This article will review what is known about the contribution of EBV to lymphoma development.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/patogenicidad , Linfoma/virología , Animales , Biopsia , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/patología , Herpesvirus Humano 4/inmunología , Interacciones Huésped-Patógeno , Humanos , Linfoma/inmunología , Linfoma/patología , Patología Molecular/métodos , Valor Predictivo de las Pruebas , Pronóstico , Factores de Riesgo , Virología/métodos , Virulencia
19.
Chin J Cancer ; 33(12): 591-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25418190

RESUMEN

Although Epstein-Barr virus (EBV) is present in the malignant Hodgkin/Reed-Sternberg (HRS) cells of a proportion of cases of classical Hodgkin lymphoma (cHL), how the virus contributes to the pathogenesis of this disease remains poorly defined. It is clear from the studies of other EBV-associated cancers that the virus is usually not sufficient for tumor development and that other oncogenic co-factors are required. This article reviews what is known about the contribution of EBV to the pathogenesis of cHL and focuses on emerging evidence implicating chronic inflammation as a potential oncogenic co-factor in this malignancy.


Asunto(s)
Herpesvirus Humano 4 , Enfermedad de Hodgkin/virología , Infecciones por Virus de Epstein-Barr , Humanos , Células de Reed-Sternberg
20.
Nucleic Acids Res ; 42(17): 11025-39, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25200074

RESUMEN

MicroRNAs (miRNAs) have negative effects on gene expression and are major players in cell function in normal and pathological conditions. Epstein-Barr virus (EBV) infection of resting B lymphocytes results in their growth transformation and associates with different B cell lymphomas. EBV-mediated B cell transformation involves large changes in gene expression, including cellular miRNAs. We performed miRNA expression analysis in growth transformation of EBV-infected B cells. We observed predominant downregulation of miRNAs and upregulation of a few miRNAs. We observed similar profiles of miRNA expression in B cells stimulated with CD40L/IL-4, and those infected with EBNA-2- and LMP-1-deficient EBV particles, suggesting the implication of the NF-kB pathway, common to all four situations. In fact, the NF-kB subunit p65 associates with the transcription start site (TSS) of both upregulated and downregulated miRNAs following EBV infection This occurs together with changes at histone H3K27me3 and histone H3K4me3. Inhibition of the NF-kB pathway impairs changes in miRNA expression, NF-kB binding and changes at the above histone modifications near the TSS of these miRNA genes. Changes in expression of these miRNAs also occurred in diffuse large B cell lymphomas (DLBCL), which are strongly NF-kB dependent. Our results highlight the relevance of the NF-kB pathway in epigenetically mediated miRNA control in B cell transformation and DLBCL.


Asunto(s)
Linfocitos B/virología , Transformación Celular Viral/genética , Epigénesis Genética , Herpesvirus Humano 4/fisiología , Linfoma de Células B/virología , MicroARNs/metabolismo , FN-kappa B/metabolismo , Linfocitos B/metabolismo , Línea Celular Tumoral , Células Cultivadas , Humanos , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...