Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 58(21): 2326-2337.e5, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37863040

RESUMEN

High-density lipoprotein (HDL) metabolism is regulated by complex interplay between the scavenger receptor group B type 1 (SR-BI) and multiple signaling molecules in the liver. Here, we show that lipocalin-2 (Lcn2) is a key regulator of hepatic SR-BI, HDL metabolism, and atherosclerosis. Overexpression of human Lcn2 in hepatocytes attenuates the development of atherosclerosis via SR-BI in western-diet-fed Ldlr-/- mice, whereas hepatocyte-specific ablation of Lcn2 has the opposite effect. Mechanistically, hepatocyte Lcn2 improves HDL metabolism and alleviates atherogenesis by blocking Nedd4-1-mediated SR-BI ubiquitination at K500 and K508. The Lcn2-improved HDL metabolism is abolished in mice with hepatocyte-specific Nedd4-1 or SR-BI deletion and in SR-BI (K500A/K508A) mutation mice. This study identifies a regulatory axis from Lcn2 to HDL via blocking Nedd4-1-mediated SR-BI ubiquitination and demonstrates that hepatocyte Lcn2 may be a promising target to improve HDL metabolism to treat atherosclerotic cardiovascular diseases.


Asunto(s)
Aterosclerosis , Lipoproteínas HDL , Ratones , Humanos , Animales , Lipoproteínas HDL/metabolismo , Lipocalina 2/genética , Lipocalina 2/metabolismo , Hepatocitos/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Hígado/metabolismo , Antígenos CD36/metabolismo
2.
J Diabetes Res ; 2023: 1901105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776229

RESUMEN

The loss of podocyte is crucial for diagnosis and prognosis of diabetic kidney disease, whereas commonly two-dimensional methods for quantifying podocyte number existed with issues of low fidelity and accuracy. In this study, clear, unobstructed brain imaging cocktails and computational analysis (CUBIC), one of three-dimensional optical clearing approaches, was used which combines tissue clearing, immunolabeling, and a light-sheet microscope to image and evaluate podocytes in C57BL/6 (C57) and db/db mice. We discovered that 77 podocytes per glomerulus were in C57 mice. On the subject of db/db mice, there were 74 podocytes by the age of 8 w, 72 podocytes by the age of 12 w, and 66 podocytes by the age of 16 w, compared with 76 podocytes in the control group, suggesting that there was a significant decrease in podocyte number in db/db mice with the age of 16 w, showing a trend which positively correlated to the deterioration of kidney function. Sample size estimation using the PASS software revealed that taking 5%, 7.5%, and 10% of the mean podocyte number per glomerulus as the statistical allowable error and 95% as total confidence interval, 33, 15, and 9 glomeruli were independently needed to be sampled in C57 mice to represent the overall glomeruli to calculate podocyte number. Furthermore, in the control group of db/db mice, 36, 18, and 11 glomeruli were needed, compared with 46, 24, and 14 glomeruli in db/db mice by the age of 8 w, 43, 21, and 12 glomeruli by the age of 12 w, and 52, 27, and 16 by the age of 16 w. These findings indicated that precise quantification of podocyte number could judge the progression of diabetic kidney disease. In addition, a small number of glomeruli could be actually representative of the whole sample size, which indicated apparent practicability of CUBIC for clinical use.


Asunto(s)
Nefropatías Diabéticas , Podocitos , Ratones , Animales , Tamaño de la Muestra , Ratones Endogámicos C57BL , Glomérulos Renales , Ratones Endogámicos
3.
Cell Death Dis ; 12(8): 754, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330891

RESUMEN

Acute kidney injury (AKI) is associated with significant morbidity and its chronic inflammation contributes to subsequent chronic kidney disease (CKD) development. Yes-associated protein (YAP), the major transcriptional coactivator of the Hippo pathway, has been shown associated with chronic inflammation, but its role and mechanism in AKI-CKD transition remain unclear. Here we aimed to investigate the role of YAP in AKI-induced chronic inflammation. Renal ischemia/reperfusion (I/R) was used to induce a mouse model of AKI-CKD transition. We used verteporfin (VP), a pharmacological inhibitor of YAP, to treat post-IRI mice for a period, and evaluated the influence of YAP inhibition on long-term outcomes of AKI. In our results, severe IRI led to maladaptive tubular repair, macrophages infiltration, and progressive fibrosis. Following AKI, the Hippo pathway was found significantly altered with YAP persistent activation. Besides, tubular YAP activation was associated with the maladaptive repair, also correlated with interstitial macrophage infiltration. Monocyte chemoattractant protein 1 (MCP-1) was found notably upregulated with YAP activation. Of note, pharmacological inhibition of YAP in vivo attenuated renal inflammation, including macrophage infiltration and MCP-1 overexpression. Consistently, in vitro oxygen-glucose deprivation and reoxygenation (OGD/R) induced YAP activation and MCP-1 overproduction whereas these could be inhibited by VP. In addition, we modulated YAP activity by RNA interference, which further confirmed YAP activation enhances MCP-1 expression. Together, we concluded tubular YAP activation with maladaptive repair exacerbates renal inflammation probably via promoting MCP-1 production, which contributes to AKI-CKD transition.


Asunto(s)
Lesión Renal Aguda/metabolismo , Vía de Señalización Hippo , Isquemia/metabolismo , Proteínas Quimioatrayentes de Monocitos/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Lesión Renal Aguda/sangre , Lesión Renal Aguda/complicaciones , Lesión Renal Aguda/patología , Animales , Nitrógeno de la Urea Sanguínea , Línea Celular , Creatinina/sangre , Fibrosis , Glucosa/deficiencia , Humanos , Inflamación/patología , Isquemia/sangre , Isquemia/complicaciones , Isquemia/patología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Oxígeno , Unión Proteica/efectos de los fármacos , Factores de Transcripción de Dominio TEA/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Verteporfina/farmacología , Proteínas Señalizadoras YAP/antagonistas & inhibidores
4.
Environ Sci Pollut Res Int ; 25(28): 28237-28247, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30074140

RESUMEN

Adenosine triphosphate (ATP), an indispensable molecule that provides energy for essentially all cellular processes, has been shown to be affected by some magnetic fields (MFs). Although people are frequently exposed to various static and power frequency MFs in their daily lives, the exact effects of these MFs of different frequencies have not been systematically investigated. Here, we tested 6-mT MFs with 0, 50, and 120 Hz for their effects on cellular ATP levels in 11 different cell lines. We found that the 6-mT static magnetic field (SMF) either does not affect or increase cellular ATP levels, while 6-mT 50-Hz MF either does not affect or decrease cellular ATP levels. In contrast, 6-mT 120-Hz MF has variable effects. We examined the mitochondrial membrane potential (MMP) as well as reactive oxygen species (ROS) in four different cell lines, but did not find their direct correlation with ATP levels. Although none of the ATP level changes induced by these three different frequencies of 6-mT MFs are dramatic, these results may be used to explain some differential cellular responses of various cell lines to different frequency MFs.


Asunto(s)
Adenosina Trifosfato/metabolismo , Campos Magnéticos , Animales , Línea Celular , Cricetulus , Humanos , Potencial de la Membrana Mitocondrial , Ratas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...