Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 398: 130528, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437968

RESUMEN

The threat of global climate change presents a significant challenge for humanity. Microalgae-based carbon capture and utilization (CCU) technology has emerged as a promising solution to this global issue. This review aims to comprehensively evaluate the current advancements in scale-up of microalgae cultivation and its applications, specifically focusing on decarbonization from flue gases, organic wastewater remediation, and biogas upgrading. The study identifies critical challenges that need to be addressed during the scale-up process and evaluates the economic viability of microalgal CCU within the carbon market. Additionally, it analyzes the commercial status of microalgae-derived products and highlights those with high market demand. This review serves as a crucial resource for researchers, industry professionals, and policymakers to develop and implement innovative approaches to enhance the efficiency of microalgae-based CO2 utilization while addressing the challenges associated with the scale-up of microalgae technologies.


Asunto(s)
Microalgas , Gases , Aguas Residuales , Tecnología , Carbono
2.
Chemosphere ; 353: 141387, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38331268

RESUMEN

In industrial-scale cultivation of microalgae, salinity stress often stimulates high-value metabolites production but decreases biomass yield. In this research, we present an extraordinary response of Arthrospira platensis to salinity stress. Specifically, we observed a significant increase in both biomass production (2.58 g L-1) and phycocyanin (PC) content (22.31%), which were enhanced by 1.26-fold and 2.62-fold, respectively, compared to the control, upon exposure to exogenous glycine betaine (GB). The biochemical analysis reveals a significant enhancement in carbonic anhydrase activity and chlorophyll a level, concurrent with reductions in carbohydrate content and reactive oxygen species (ROS) levels. Further, transcriptomic profiling indicates a downregulation of genes associated with the tricarboxylic acid (TCA) cycle and an upregulation of genes linked to nitrogen assimilation, hinting at a rebalanced carbon/nitrogen metabolism favoring PC accumulation. This work thus presents a promising strategy for simultaneous enhancement of biomass production and PC content in A. platensis and expands our understanding of PC biosynthesis and salinity stress responses in A. platensis.


Asunto(s)
Ficocianina , Spirulina , Betaína/farmacología , Clorofila A/metabolismo , Biomasa , Nitrógeno/metabolismo , Spirulina/metabolismo , Estrés Salino , Suplementos Dietéticos
3.
Chemosphere ; 349: 140904, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070604

RESUMEN

The strategy of nitrogen sufficiency conversion can improve ammonium nitrogen (NH4+-N) removal with microalgal cells from ammonium-rich wastewater. We selected and identified one promising isolated algal strain, NCU-7, Chlorella sorokiniana, which showed a high algal yield and tolerance to ammonium in wastewater, as well as strong adaptability to N deprivation. The transition from N deprivation through mixotrophy (DN, M) to N sufficiency through autotrophy (SN, P) achieved the highest algal yields (optical density = 1.18 and 1.59) and NH4+-N removal rates (2.5 and 4.2 mg L-1 d-1) from synthetic wastewaters at two NH4+-N concentrations (160 and 320 mg L-1, respectively). Algal cells in DN, M culture obtained the lowest protein content (20.6%) but the highest lipid content (34.0%) among all cultures at the end of the stage 2. After transferring to stage 3, the lowest protein content gradually recovered to almost the same level as SN, P culture on the final day. Transmission electron microscopy and proteomics analysis demonstrated that algal cells had reduced intracellular protein content but accumulated lipids under N deprivation by regulating the reduction in synthesis of protein, carbohydrate, and chloroplast, while enhancing lipid synthesis. After transferring to N sufficiency, algal cells accelerated their growth by recovering protein synthesis, leading to excessive uptake of NH4+-N from wastewater. This study provides specific insights into a nitrogen sufficiency conversion strategy to enhance algal growth and NH4+-N removal/uptake during microalgae-based ammonium-rich wastewater treatment.


Asunto(s)
Compuestos de Amonio , Chlorella , Microalgas , Purificación del Agua , Compuestos de Amonio/metabolismo , Aguas Residuales , Chlorella/metabolismo , Microalgas/metabolismo , Nitrógeno/metabolismo , Biomasa , Lípidos
4.
Chemosphere ; 337: 139416, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37414296

RESUMEN

Anaerobic digestion piggery effluent (ADPE) shows high chromaticity and ammonium levels, severely inhibiting algal growth. Fungal pretreatment has great potential for decolorization and nutrient removal from wastewater, which coupled with microalgal cultivation may be a reliable strategy for sustainable ADPE resource utilization. In this study, we selected and identified two locally isolated eco-friendly fungal strains for ADPE pretreatment, and fungal culture conditions were optimized for decolorization and ammonium nitrogen (NH4+-N) removal. Subsequently, the underlying mechanisms of fungal decolorization and nitrogen removal were investigated, and the feasibility of using pretreated ADPE for algal cultivation was explored. The results showed that two fungal strains were identified as Trichoderma harzianum and Trichoderma afroharzianum, respectively, presenting good growth and decolorization performance for ADPE pretreatment. The optimized culture conditions were as follows: 20% ADPE, 8 g L-1 glucose, initial pH 6, 160 rpm, 25-30 °C, and 0.15 g L-1 initial dry-weight. ADPE decolorization was mainly caused by fungal biodegradation of color-related humic substances through manganese peroxidase secretion. The removed nitrogen was completely converted into fungal biomass as nitrogen assimilated, ca. 90% of which was attributed to NH4+-N removal. The pretreated ADPE significantly improved algal growth and nutrient removal, demonstrating the feasibility of developing an eco-friendly fungi-based pretreatment technology.


Asunto(s)
Compuestos de Amonio , Microalgas , Nitrógeno/metabolismo , Anaerobiosis , Desnitrificación , Aguas Residuales , Microalgas/metabolismo , Biomasa , Compuestos de Amonio/metabolismo
5.
Nat Plants ; 6(4): 427, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32246096

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Plants ; 6(3): 238-244, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32170286

RESUMEN

Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation1,2. The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy3. Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. 4) or super-rogue D1 (ref. 5), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. 4,6). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.


Asunto(s)
Clorofila/análogos & derivados , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/metabolismo , Clorofila/biosíntesis , Cianobacterias/genética , Microorganismos Modificados Genéticamente/metabolismo , Análisis de Secuencia de Proteína
7.
Alzheimers Dement (N Y) ; 5: 717-731, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921964

RESUMEN

INTRODUCTION: Iron accumulates in the brain during aging, which catalyzes radical formation, causing neuronal impairment, and is thus considered a pathogenic factor in Alzheimer's disease (AD). To scavenge excess iron-catalyzed radicals and thereby protect the brain and decrease the incidence of AD, we synthesized a soluble pro-iron 5-YHEDA peptide. However, the blood-brain barrier (BBB) blocks large drug molecules from entering the brain and thus strongly reduces their therapeutic effects. However, alternative receptor- or transporter-mediated approaches are possible. METHODS: A low-density lipoprotein receptor (LDLR)-binding segment of Apolipoprotein B-100 was linked to the 5-YHEDA peptide (bs-5-YHEDA) and intracardially injected into senescent (SN) mice that displayed symptoms of cognitive impairment similar to those of people with AD. RESULTS: We successfully delivered 5-YHEDA across the BBB into the brains of the SN mice via vascular epithelium LDLR-mediated endocytosis. The data showed that excess brain iron and radical-induced neuronal necrosis were reduced after the bs-5-YHEDA treatment, together with cognitive amelioration in the SN mouse, and that the senescence-associated ferritin and transferrin increase, anemia and inflammation reversed without kidney or liver injury. DISCUSSION: bs-5-YHEDA may be a mild and safe iron remover that can cross the BBB and enter the brain to relieve excessive iron- and radical-induced cognitive disorders.

8.
Essays Biochem ; 62(1): 85-94, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29563222

RESUMEN

In this review, we highlight recent research and current ideas on how to improve the efficiency of the light reactions of photosynthesis in crops. We note that the efficiency of photosynthesis is a balance between how much energy is used for growth and the energy wasted or spent protecting the photosynthetic machinery from photodamage. There are reasons to be optimistic about enhancing photosynthetic efficiency, but many appealing ideas are still on the drawing board. It is envisioned that the crops of the future will be extensively genetically modified to tailor them to specific natural or artificial environmental conditions.


Asunto(s)
Productos Agrícolas/fisiología , Luz , Fotosíntesis , Adenosina Trifosfato/biosíntesis , Productos Agrícolas/crecimiento & desarrollo , Proteínas del Complejo del Centro de Reacción Fotosintética/fisiología
9.
Philos Trans R Soc Lond B Biol Sci ; 372(1730)2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28808107

RESUMEN

One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas Bacterianas/genética , Cianobacterias/fisiología , Fotosíntesis , Complejo de Proteína del Fotosistema II/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Cloroplastos/metabolismo , Cianobacterias/genética , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/genética , Synechocystis/fisiología
10.
Nat Plants ; 1: 15168, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27251713

RESUMEN

The oxygen-evolving photosystem II (PSII) complex located in chloroplasts and cyanobacteria is sensitive to light-induced damage(1) that unless repaired causes reduction in photosynthetic capacity and growth. Although a potential target for crop improvement, the mechanism of PSII repair remains unclear. The D1 reaction center protein is the main target for photodamage(2), with repair involving the selective degradation of the damaged protein by FtsH protease(3). How a single damaged PSII subunit is recognized for replacement is unknown. Here, we have tested the dark stability of PSII subunits in strains of the cyanobacterium Synechocystis PCC 6803 blocked at specific stages of assembly. We have found that when D1, which is normally shielded by the CP43 subunit, becomes exposed in a photochemically active PSII complex lacking CP43, it is selectively degraded by FtsH even in the dark. Removal of the CP47 subunit, which increases accessibility of FtsH to the D2 subunit, induced dark degradation of D2 at a faster rate than that of D1. In contrast, CP47 and CP43 are resistant to degradation in the dark. Our results indicate that protease accessibility induced by PSII disassembly is an important determinant in the selection of the D1 and D2 subunits to be degraded by FtsH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...