Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915643

RESUMEN

HflX is known to rescue stalled ribosomes and is implicated in antibiotic resistance in several bacteria. Here we present several high-resolution cryo-EM structures of mycobacterial HflX in complex with the ribosome and its 50S subunit, with and without antibiotics. These structures reveal a distinct mechanism for HflX-mediated ribosome splitting and antibiotic resistance in mycobacteria. In addition to dissociating ribosome into two subunits, mycobacterial HflX mediates persistent disordering of multiple 23S rRNA helices to generate an inactive pool of 50S subunits. Mycobacterial HflX also acts as an anti-association factor by binding to pre-dissociated 50S subunits. A mycobacteria-specific insertion in HflX reaches further into the peptidyl transferase center. The position of this insertion overlaps with ribosome-bound macrolides or lincosamide class of antibiotics. The extended conformation of insertion seen in the absence of these antibiotics retracts and adjusts around the bound antibiotics instead of physically displacing them. It therefore likely imparts antibiotic resistance by sequestration of the antibiotic-bound inactive 50S subunits.

2.
Nat Commun ; 14(1): 6961, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907464

RESUMEN

The spirochete bacterial pathogen Borrelia (Borreliella) burgdorferi (Bbu) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. Here we present the structure of the Bbu 70S ribosome obtained by single particle cryo-electron microscopy at 2.9 Å resolution, revealing a bound hibernation promotion factor protein and two genetically non-annotated ribosomal proteins bS22 and bL38. The ribosomal protein uL30 in Bbu has an N-terminal α-helical extension, partly resembling the mycobacterial bL37 protein, suggesting evolution of bL37 and a shorter uL30 from a longer uL30 protein. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energy predictions for antibiotics reflect subtle distinctions in antibiotic-binding sites in the Bbu ribosome. Discovery of these features in the Bbu ribosome may enable better ribosome-targeted antibiotic design for Lyme disease treatment.


Asunto(s)
Proteínas Bacterianas , Enfermedad de Lyme , Animales , Humanos , Microscopía por Crioelectrón , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ribosomas/metabolismo , Proteínas Ribosómicas/metabolismo , Antibacterianos/metabolismo , Mamíferos/metabolismo
3.
bioRxiv ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131667

RESUMEN

The spirochete bacterial pathogen Borrelia ( Borreliella) burgdorferi ( Bbu ) affects more than 10% of the world population and causes Lyme disease in about half a million people in the US annually. Therapy for Lyme disease includes antibiotics that target the Bbu ribosome. We determined the structure of the Bbu 70S ribosome by single particle cryo-electron microscopy (cryo-EM) at a resolution of 2.9 Å, revealing its distinctive features. In contrast to a previous study suggesting that the single hibernation promoting factor protein present in Bbu (bbHPF) may not bind to its ribosome, our structure reveals a clear density for bbHPF bound to the decoding center of the small ribosomal 30S subunit. The 30S subunit has a non-annotated ribosomal protein, bS22, that has been found only in mycobacteria and Bacteroidetes so far. The protein bL38, recently discovered in Bacteroidetes, is also present in the Bbu large 50S ribosomal subunit. The protein bL37, previously seen only in mycobacterial ribosomes, is replaced by an N-terminal α-helical extension of uL30, suggesting that the two bacterial ribosomal proteins uL30 and bL37 may have evolved from one longer uL30 protein. The longer uL30 protein interacts with both the 23S rRNA and the 5S rRNA, is near the peptidyl transferase center (PTC), and could impart greater stability to this region. Its analogy to proteins uL30m and mL63 in mammalian mitochondrial ribosomes also suggests a plausible evolutionary pathway for expansion of protein content in mammalian mitochondrial ribosomes. Computational binding free energies are predicted for antibiotics, bound to the decoding center or PTC and are in clinical use for Lyme disease, that account for subtle distinctions in antibiotic-binding regions in the Bbu ribosome structure. Besides revealing unanticipated structural and compositional features for the Bbu ribosome, our study thus provides groundwork to enable ribosome-targeted antibiotic design for more effective treatment of Lyme disease.

4.
Proc Natl Acad Sci U S A ; 120(22): e2302006120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216503

RESUMEN

The stringent response, which leads to persistence of nutrient-starved mycobacteria, is induced by activation of the RelA/SpoT homolog (Rsh) upon entry of a deacylated-tRNA in a translating ribosome. However, the mechanism by which Rsh identifies such ribosomes in vivo remains unclear. Here, we show that conditions inducing ribosome hibernation result in loss of intracellular Rsh in a Clp protease-dependent manner. This loss is also observed in nonstarved cells using mutations in Rsh that block its interaction with the ribosome, indicating that Rsh association with the ribosome is important for Rsh stability. The cryo-EM structure of the Rsh-bound 70S ribosome in a translation initiation complex reveals unknown interactions between the ACT domain of Rsh and components of the ribosomal L7/L12 stalk base, suggesting that the aminoacylation status of A-site tRNA is surveilled during the first cycle of elongation. Altogether, we propose a surveillance model of Rsh activation that originates from its constitutive interaction with the ribosomes entering the translation cycle.


Asunto(s)
Mycobacterium , Ribosomas , Ribosomas/genética , ARN de Transferencia/química , Mycobacterium/genética
5.
bioRxiv ; 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37034768

RESUMEN

Treatment of tuberculosis continues to be challenging due to the widespread latent form of the disease and the emergence of antibiotic-resistant strains of the pathogen, Mycobacterium tuberculosis. Bacterial ribosomes are a common and effective target for antibiotics. Several second line anti-tuberculosis drugs, e.g. kanamycin, amikacin, and capreomycin, target ribosomal RNA to inhibit protein synthesis. However, M. tuberculosis can acquire resistance to these drugs, emphasizing the need to identify new drug targets. Previous cryo-EM structures of the M. tuberculosis and M. smegmatis ribosomes identified two novel ribosomal proteins, bS22 and bL37, in the vicinity of two crucial drug-binding sites: the mRNA-decoding center on the small (30S), and the peptidyl-transferase center on the large (50S) ribosomal subunits, respectively. The functional significance of these two small proteins is unknown. In this study, we observe that an M. smegmatis strain lacking the bs22 gene shows enhanced susceptibility to kanamycin compared to the wild-type strain. Cryo-EM structures of the ribosomes lacking bS22 in the presence and absence of kanamycin suggest a direct role of bS22 in modulating the 16S rRNA kanamycin-binding site. Our structures suggest that amino-acid residue Lys-16 of bS22 interacts directly with the phosphate backbone of helix 44 of 16S rRNA to influence the micro-configuration of the kanamycin-binding pocket. Our analysis shows that similar interactions occur between eukaryotic homologues of bS22, and their corresponding rRNAs, pointing to a common mechanism of aminoglycoside resistance in higher organisms.

6.
Microbiology (Reading) ; 167(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33555244

RESUMEN

Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.


Asunto(s)
Mycobacterium/fisiología , Tuberculosis/microbiología , Antituberculosos/metabolismo , Antituberculosos/uso terapéutico , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Humanos , Mycobacterium/efectos de los fármacos , Mycobacterium/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Tuberculosis/tratamiento farmacológico , Zinc/deficiencia
7.
Artículo en Inglés | MEDLINE | ID: mdl-33361293

RESUMEN

Zinc is an essential micronutrient for mycobacteria, and its depletion induces multiple adaptive changes in cellular physiology, the most remarkable of which are remodeling and hibernation of ribosomes. Ribosome remodeling, induced upon relatively moderate depletion of zinc, involves replacement of multiple ribosomal proteins containing the zinc-binding CXXC motif (called C+ r proteins) by their motif-free C- paralogs. Severe zinc depletion induces binding of mycobacterial protein Y (Mpy) to the 70S C- ribosome, thereby stabilizing the ribosome in an inactive state that is also resistant to kanamycin and streptomycin. Because the Mpy binding region on the ribosome is proximal to the binding pocket of spectinamides (Spa), the preclinical drug candidates for tuberculosis, we addressed the impact of remodeling and hibernation of ribosomes on Spa sensitivity. We report here that while Mpy binding has no significant effect on Spa sensitivity to the ribosome, replacement of S14C+ with its C- counterpart reduces the binding affinity of the drug by ∼2-fold, causing increased Spa tolerance in Mycobacterium smegmatis and Mycobacterium tuberculosis cells harboring the C- ribosome. The altered interaction between Spa and ribosomes likely results from new contact points for D67 and R83 residues of S14C- with U1138 and C1184 of 16S rRNA helix 34, respectively. Given that M. tuberculosis induces ribosome remodeling during progression from the acute to chronic phase of lung infection, our findings highlight new considerations in the development of Spa as effective drugs against tuberculosis.


Asunto(s)
Preparaciones Farmacéuticas , Zinc , ARN Ribosómico 16S , Proteínas Ribosómicas/genética , Ribosomas/genética , Factores de Transcripción
8.
Nat Commun ; 11(1): 3830, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737313

RESUMEN

The mammalian mitochondrial ribosome (mitoribosome) and its associated translational factors have evolved to accommodate greater participation of proteins in mitochondrial translation. Here we present the 2.68-3.96 Å cryo-EM structures of the human 55S mitoribosome in complex with the human mitochondrial elongation factor G1 (EF-G1mt) in three distinct conformational states, including an intermediate state and a post-translocational state. These structures reveal the role of several mitochondria-specific (mito-specific) mitoribosomal proteins (MRPs) and a mito-specific segment of EF-G1mt in mitochondrial tRNA (tRNAmt) translocation. In particular, the mito-specific C-terminal extension in EF-G1mt is directly involved in translocation of the acceptor arm of the A-site tRNAmt. In addition to the ratchet-like and independent head-swiveling motions exhibited by the small mitoribosomal subunit, we discover significant conformational changes in MRP mL45 at the nascent polypeptide-exit site within the large mitoribosomal subunit that could be critical for tethering of the elongating mitoribosome onto the inner-mitochondrial membrane.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Extensión de la Cadena Peptídica de Translación , Factor G de Elongación Peptídica/química , ARN Mitocondrial/química , ARN de Transferencia/química , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido
9.
Proc Natl Acad Sci U S A ; 116(17): 8283-8288, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30962385

RESUMEN

Mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing proteins that are essential for oxidative phosphorylation (ATP generation). Despite their common ancestry with bacteria, the composition and structure of the human mitoribosome and its translational factors are significantly different from those of their bacterial counterparts. The mammalian mitoribosome recycling factor (RRFmt) carries a mito-specific N terminus extension (NTE), which is necessary for the function of RRFmt Here we present a 3.9-Å resolution cryo-electron microscopic (cryo-EM) structure of the human 55S mitoribosome-RRFmt complex, which reveals α-helix and loop structures for the NTE that makes multiple mito-specific interactions with functionally critical regions of the mitoribosome. These include ribosomal RNA segments that constitute the peptidyl transferase center (PTC) and those that connect PTC with the GTPase-associated center and with mitoribosomal proteins L16 and L27. Our structure reveals the presence of a tRNA in the pe/E position and a rotation of the small mitoribosomal subunit on RRFmt binding. In addition, we observe an interaction between the pe/E tRNA and a mito-specific protein, mL64. These findings help understand the unique features of mitoribosome recycling.


Asunto(s)
Ribosomas Mitocondriales , Proteínas Ribosómicas , Microscopía por Crioelectrón , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Humanos , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Ribosomas Mitocondriales/ultraestructura , Modelos Moleculares , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo
10.
iScience ; 12: 76-86, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30677741

RESUMEN

The human mitochondrial translational initiation factor 3 (IF3mt) carries mitochondrial-specific amino acid extensions at both its N and C termini (N- and C-terminal extensions [NTE and CTE, respectively]), when compared with its eubacterial counterpart. Here we present 3.3- to 3.5-Å-resolution cryoelectron microscopic structures of the mammalian 28S mitoribosomal subunit in complex with human IF3mt. Unique contacts observed between the 28S subunit and N-terminal domain of IF3mt explain its unusually high affinity for the 28S subunit, whereas the position of the mito-specific NTE suggests NTE's role in binding of initiator tRNA to the 28S subunit. The location of the C-terminal domain (CTD) clarifies its anti-association activity, whereas the orientation of the mito-specific CTE provides a mechanistic explanation for its role in destabilizing initiator tRNA in the absence of mRNA. Furthermore, our structure hints at a possible role of the CTD in recruiting leaderless mRNAs for translation initiation. Our findings highlight unique features of IF3mt in mitochondrial translation initiation.

12.
Proc Natl Acad Sci U S A ; 115(32): 8191-8196, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038002

RESUMEN

Bacteria respond to zinc starvation by replacing ribosomal proteins that have the zinc-binding CXXC motif (C+) with their zinc-free (C-) paralogues. Consequences of this process beyond zinc homeostasis are unknown. Here, we show that the C- ribosome in Mycobacterium smegmatis is the exclusive target of a bacterial protein Y homolog, referred to as mycobacterial-specific protein Y (MPY), which binds to the decoding region of the 30S subunit, thereby inactivating the ribosome. MPY binding is dependent on another mycobacterial protein, MPY recruitment factor (MRF), which is induced on zinc depletion, and interacts with C- ribosomes. MPY binding confers structural stability to C- ribosomes, promoting survival of growth-arrested cells under zinc-limiting conditions. Binding of MPY also has direct influence on the dynamics of aminoglycoside-binding pockets of the C- ribosome to inhibit binding of these antibiotics. Together, our data suggest that zinc limitation leads to ribosome hibernation and aminoglycoside resistance in mycobacteria. Furthermore, our observation of the expression of the proteins of C- ribosomes in Mycobacterium tuberculosis in a mouse model of infection suggests that ribosome hibernation could be relevant in our understanding of persistence and drug tolerance of the pathogen encountered during chemotherapy of TB.


Asunto(s)
Antibióticos Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/fisiología , Proteínas Ribosómicas/metabolismo , Tuberculosis/tratamiento farmacológico , Zinc/deficiencia , Aminoglicósidos/farmacología , Animales , Microscopía por Crioelectrón , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/fisiología , Mycobacterium tuberculosis/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Ribosomas/ultraestructura , Tuberculosis/microbiología , Tuberculosis/patología
13.
Biochimie ; 114: 119-26, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25797916

RESUMEN

Mitochondria carry their own genetic material and gene-expression machinery, including ribosomes, which are responsible for synthesizing polypeptides that form essential components of the complexes involved in oxidative phosphorylation (or ATP generation) for the eukaryotic cell. Mitochondrial ribosomes (mitoribosomes) are quite divergent from cytoplasmic ribosomes in both composition and structure even as their main functional cores, such as the mRNA decoding and peptidyl transferase sites, are highly conserved. Remarkable progress has been made recently towards understanding the structure of mitoribosomes, by obtaining high-resolution cryo-electron microscopic (cryo-EM) maps. These studies confirm previous structural findings that had revealed that a significant reduction in size of ribosomal RNAs has caused topological changes in some of the functionally relevant regions, including the transfer RNA (tRNA)-binding sites and the nascent polypeptide-exit tunnel, within the structure of the mammalian mitoribosome. In addition, these studies provide unprecedented detailed views of the molecular architecture of those regions. In this review, we summarize the current state of knowledge of the structure of the mammalian mitoribosome and describe the molecular environment of its tRNA-exit region.


Asunto(s)
Ribosomas Mitocondriales/fisiología , Biosíntesis de Proteínas , ARN de Transferencia/fisiología , Animales , Dominio Catalítico , Humanos , Ribosomas Mitocondriales/química , Modelos Moleculares , ARN de Transferencia/química
14.
Proc Natl Acad Sci U S A ; 111(20): 7284-9, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24799711

RESUMEN

The mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing 13 membrane proteins that form essential components of the complexes involved in oxidative phosphorylation or ATP generation for the eukaryotic cell. The mammalian 55S mitoribosome contains significantly smaller rRNAs and a large mass of mitochondrial ribosomal proteins (MRPs), including large mito-specific amino acid extensions and insertions in MRPs that are homologous to bacterial ribosomal proteins and an additional 35 mito-specific MRPs. Here we present the cryo-EM structure analysis of the small (28S) subunit (SSU) of the 55S mitoribosome. We find that the mito-specific extensions in homologous MRPs generally are involved in inter-MRP contacts and in contacts with mito-specific MRPs, suggesting a stepwise evolution of the current architecture of the mitoribosome. Although most of the mito-specific MRPs and extensions of homologous MRPs are situated on the peripheral regions, they also contribute significantly to the formation of linings of the mRNA and tRNA paths, suggesting a tailor-made structural organization of the mito-SSU for the recruitment of mito-specific mRNAs, most of which do not possess a 5' leader sequence. In addition, docking of previously published coordinates of the large (39S) subunit (LSU) into the cryo-EM map of the 55S mitoribosome reveals that mito-specific MRPs of both the SSU and LSU are involved directly in the formation of six of the 15 intersubunit bridges.


Asunto(s)
Mitocondrias/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Animales , Sitios de Unión , Bovinos , Microscopía por Crioelectrón , Citoplasma/metabolismo , Proteínas de Unión al GTP/metabolismo , Procesamiento de Imagen Asistido por Computador , Hígado/metabolismo , Conformación Proteica , ARN Mensajero/metabolismo , ARN Ribosómico 16S/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo
15.
Mol Cell ; 54(3): 407-417, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24746697

RESUMEN

Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused by loss of function of the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is involved in the translational regulation of several neuronal mRNAs. However, the precise mechanism of translational inhibition by FMRP is unknown. Here, we show that FMRP inhibits translation by binding directly to the L5 protein on the 80S ribosome. Furthermore, cryoelectron microscopic reconstruction of the 80S ribosome⋅FMRP complex shows that FMRP binds within the intersubunit space of the ribosome such that it would preclude the binding of tRNA and translation elongation factors on the ribosome. These findings suggest that FMRP inhibits translation by blocking the essential components of the translational machinery from binding to the ribosome.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Regulación de la Expresión Génica , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Animales , Microscopía por Crioelectrón , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , G-Cuádruplex , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química
16.
Curr Opin Struct Biol ; 22(6): 797-803, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22959417

RESUMEN

During the last decade groundbreaking progress has been made towards the understanding of structure and function of cell's translational machinery. Cryo-electron microscopic (cryo-EM) and X-ray crystallographic structures of cytoplasmic ribosomes from several bacterial and eukaryotic species are now available in various ligand-bound states. Significant advances have also been made in structural studies on ribosomes of the cellular organelles, such as those present in the chloroplasts and mitochondria, using cryo-EM techniques. Here we review the progress made in structure determination of the mitochondrial ribosomes, with an emphasis on the mammalian mitochondrial ribosome and one of its translation initiation factors, and discuss challenges that lie ahead in obtaining their high-resolution structures.


Asunto(s)
Mitocondrias/genética , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Animales , Humanos , Membranas Mitocondriales/metabolismo , Péptidos/química , Péptidos/metabolismo , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo
17.
J Biol Chem ; 285(6): 4006-4014, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19965869

RESUMEN

Plastid-specific ribosomal proteins (PSRPs) have been proposed to play roles in the light-dependent regulation of chloroplast translation. Here we demonstrate that PSRP1 is not a bona fide ribosomal protein, but rather a functional homologue of the Escherichia coli cold-shock protein pY. Three-dimensional Cryo-electron microscopic (Cryo-EM) reconstructions reveal that, like pY, PSRP1 binds within the intersubunit space of the 70S ribosome, at a site overlapping the positions of mRNA and A- and P-site tRNAs. PSRP1 induces conformational changes within ribosomal components that comprise several intersubunit bridges, including bridge B2a, thereby stabilizes the ribosome against dissociation. We find that the presence of PSRP1/pY lowers the binding of tRNA to the ribosome. Furthermore, similarly to tRNAs, PSRP1/pY is recycled from the ribosome by the concerted action of the ribosome-recycling factor (RRF) and elongation factor G (EF-G). These results suggest a novel function for EF-G and RRF in the post-stress return of PSRP1/pY-inactivated ribosomes to the actively translating pool.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/química , Ribosomas/ultraestructura , Homología de Secuencia de Aminoácido , Spinacia oleracea/genética , Spinacia oleracea/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(24): 9637-42, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19497863

RESUMEN

The Leishmania tarentolae mitochondrial ribosome (Lmr) is a minimal ribosomal RNA (rRNA)-containing ribosome. We have obtained a cryo-EM map of the Lmr. The map reveals several features that have not been seen in previously-determined structures of eubacterial or eukaryotic (cytoplasmic or organellar) ribosomes to our knowledge. Comparisons of the Lmr map with X-ray crystallographic and cryo-EM maps of the eubacterial ribosomes and a cryo-EM map of the mammalian mitochondrial ribosome show that (i) the overall structure of the Lmr is considerably more porous, (ii) the topology of the intersubunit space is significantly different, with fewer intersubunit bridges, but more tunnels, and (iii) several of the functionally-important rRNA regions, including the alpha-sarcin-ricin loop, have different relative positions within the structure. Furthermore, the major portions of the mRNA channel, the tRNA passage, and the nascent polypeptide exit tunnel contain Lmr-specific proteins, suggesting that the mechanisms for mRNA recruitment, tRNA interaction, and exiting of the nascent polypeptide in Lmr must differ markedly from the mechanisms deduced for ribosomes in other organisms. Our study identifies certain structural features that are characteristic solely of mitochondrial ribosomes and other features that are characteristic of both mitochondrial and chloroplast ribosomes (i.e., organellar ribosomes).


Asunto(s)
Leishmania/genética , Mitocondrias/química , Ribosomas/química , Animales , Microscopía por Crioelectrón , Mitocondrias/metabolismo , Modelos Moleculares , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura
19.
Mol Cell ; 28(3): 434-45, 2007 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17996707

RESUMEN

Ribosome binding factor A (RbfA) is a bacterial cold shock response protein, required for an efficient processing of the 5' end of the 16S ribosomal RNA (rRNA) during assembly of the small (30S) ribosomal subunit. Here we present a crystal structure of Thermus thermophilus (Tth) RbfA and a three-dimensional cryo-electron microscopic (EM) map of the Tth 30S*RbfA complex. RbfA binds to the 30S subunit in a position overlapping the binding sites of the A and P site tRNAs, and RbfA's functionally important C terminus extends toward the 5' end of the 16S rRNA. In the presence of RbfA, a portion of the 16S rRNA encompassing helix 44, which is known to be directly involved in mRNA decoding and tRNA binding, is displaced. These results shed light on the role played by RbfA during maturation of the 30S subunit, and also indicate how RbfA provides cells with a translational advantage under conditions of cold shock.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ARN/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Thermus thermophilus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Sitios de Unión , Microscopía por Crioelectrón , Modelos Moleculares , Estructura Terciaria de Proteína , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/fisiología
20.
Proc Natl Acad Sci U S A ; 104(49): 19315-20, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18042701

RESUMEN

Protein synthesis in the chloroplast is carried out by chloroplast ribosomes (chloro-ribosome) and regulated in a light-dependent manner. Chloroplast or plastid ribosomal proteins (PRPs) generally are larger than their bacterial counterparts, and chloro-ribosomes contain additional plastid-specific ribosomal proteins (PSRPs); however, it is unclear to what extent these proteins play structural or regulatory roles during translation. We have obtained a three-dimensional cryo-EM map of the spinach 70S chloro-ribosome, revealing the overall structural organization to be similar to bacterial ribosomes. Fitting of the conserved portions of the x-ray crystallographic structure of the bacterial 70S ribosome into our cryo-EM map of the chloro-ribosome reveals the positions of PRP extensions and the locations of the PSRPs. Surprisingly, PSRP1 binds in the decoding region of the small (30S) ribosomal subunit, in a manner that would preclude the binding of messenger and transfer RNAs to the ribosome, suggesting that PSRP1 is a translation factor rather than a ribosomal protein. PSRP2 and PSRP3 appear to structurally compensate for missing segments of the 16S rRNA within the 30S subunit, whereas PSRP4 occupies a position buried within the head of the 30S subunit. One of the two PSRPs in the large (50S) ribosomal subunit lies near the tRNA exit site. Furthermore, we find a mass of density corresponding to chloro-ribosome recycling factor; domain II of this factor appears to interact with the flexible C-terminal domain of PSRP1. Our study provides evolutionary insights into the structural and functional roles that the PSRPs play during protein synthesis in chloroplasts.


Asunto(s)
Cloroplastos/química , Proteínas de Plantas/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Cloroplastos/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Evolución Molecular , Proteínas de Plantas/metabolismo , Plastidios/química , Plastidios/ultraestructura , Conformación Proteica , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Spinacia oleracea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA