Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
2.
PLoS One ; 18(11): e0294178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38015854

RESUMEN

Spotted seatrout, a popular recreational sport fish in the southeastern United States, are affected by freshwater flow conditions and the availability of estuarine habitat. However, the relative influence of these factors, particularly on early life stages of seatrout, remains uncertain. We used generalized linear models to quantify relationships between the probability of encountering juvenile spotted seatrout during seine surveys and various factors, including freshwater inflow conditions, the availability and richness of estuarine habitats (seagrass, salt marsh, oyster beds) around (400-m radius) fish collection sites (seascape-scale context), as well as distance to the nearest inlet to the Gulf of Mexico (estuary-scale context) across shallow waters (< 1.5 m depth) of Apalachicola Bay, Florida. Modelling results showed a consistent positive correlation between seagrass area and the probability of encountering juvenile seatrout (all four size classes from 15mm-200mm Standard Length (SL)). The probability of encountering the two smallest juvenile seatrout size classes (15-50mm and 51-100mm SL) was also related to freshwater inflow conditions, particularly within a 3-month period prior to and including peak recruitment. Freshwater inflow may affect early life stages by influencing passive transport of eggs and larvae, planktonic food availability, and predation pressure through increases in turbidity. In contrast, encounter probabilities of the two larger size classes (101-150mm and 151-200mm) were unrelated to freshwater inflow. Inflow-related processes may be less important to the larger juveniles as they have typically settled out of the plankton into benthic habitats which provide refuge from predation and abundant benthic food sources which are not as closely tied to freshwater inflow effects. In addition, models revealed that occurrence of the larger juveniles was related to the availability of nearby habitat types such as oyster beds and salt marshes, suggesting that increased mobility as seatrout grow may allow them to use nearby habitat types as additional sources of food and refuge. These results add to a growing body of literature aimed at understanding the influence of freshwater inflow as well as seascape context on vulnerable juvenile life stages of fishery species to provide more informed strategies for freshwater inflow management and habitat conservation.


Asunto(s)
Estuarios , Perciformes , Animales , Peces , Ecosistema , Agua Dulce
3.
J Invertebr Pathol ; 198: 107930, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37148998

RESUMEN

Subtropical Florida blue crabs, Callinectes sapidus, exhibit differing life history traits compared to their temperate counterparts, likely influencing symbiont infection dynamics. Little information exists for Florida C. sapidus symbiont profiles, their distribution among various habitats, and influence on crab condition. Using histopathology, genomics, and transmission electron microscopy, we describe the first symbiont profiles for Florida C. sapidus occupying freshwater to marine habitats. Twelve symbiont groups were identified from 409 crabs including ciliophorans, digenean, microsporidian, Haplosporidia, Hematodinium sp., Nematoda, filamentous bacteria, gregarine, Callinectes sapidus nudivirus, Octolasmis sp., Cambarincola sp., and putative microcell. Overall, 78% of C. sapidus were documented with one or more symbiont groups demonstrating high infection rates in wild populations. Environmental variables water temperature and salinity explained 48% of the variation in symbiont groups among Florida habitats, and salinity was positively correlated with C. sapidus symbiont diversity. This suggests freshwater C. sapidus possess fewer symbionts and represent healthier individuals compared to saltwater populations. Crab condition was examined using the reflex action mortality predictor (RAMP) to determine if reflex impairment could be linked to symbiont prevalence. Symbionts were found positively correlated with crab condition, and impaired crabs were more likely to host symbionts, demonstrating symbiont inclusion may boost predictive ability of the RAMP application. The microsporidian symbiont group had a particularly strong effect on C. sapidus reflex response, and impairment was on average 1.57 times higher compared to all other symbiont groups. Our findings demonstrate the importance of considering full symbiont profiles and their associations with a spatially and temporally variable environment to fully assess C. sapidus population health.


Asunto(s)
Braquiuros , Dinoflagelados , Animales , Florida , Temperatura , Salinidad , Dinoflagelados/fisiología
4.
PLoS One ; 15(11): e0241871, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33175886

RESUMEN

Along the Florida reef tract, stony-coral-tissue-loss disease (SCTLD) has caused extensive mortality of more than 20 scleractinian coral species. The pathogen is unknown, but its epizoology indicates that the disease, facilitated by water currents, has progressed linearly along the tract, affecting reefs at the scale of hundreds of kilometers. To inform ongoing disease mitigation efforts, we examined the small-scale spatial and temporal epidemiology of SCTLD. We established a series of sites in the middle Florida Keys at offshore and inshore locations that had not yet shown signs of SCTLD. We then conducted high-frequency monitoring from February 2018 through September 2019 and documented the onset of SCTLD and its progression through the sites. SCTLD was first observed at one site during early February 2018 and by early March 2018 all sites showed signs of the disease. A dynamic multistate model suggested that disease transmission was independent of coral density and found little evidence of a positive association between a colony showing signs of SCTLD and the condition or distance to its neighboring colonies. The model did, however, indicate that the probability of a colony showing signs of SCTLD increased with increasing colony surface area. These results are consistent with the water-borne transmission of a pathogen that progressed rapidly through the survey area. However, by the end of our survey the progression of SCTLD had slowed, particularly at inshore sites. Many affected colonies no longer exhibited progressive tissue mortality typical of the disease, suggesting the existence of differentially resilient colonies or coral communities, meriting their use for future coral rescue and propagation and disease research. These results are useful for refining ongoing SCTLD mitigation strategies, particularly by determining when disease rates are sufficiently low for direct intervention efforts designed to arrest disease progression on individual coral colonies will be most effective.


Asunto(s)
Antozoos/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Animales , Arrecifes de Coral , Florida/epidemiología , Dinámica Poblacional , Análisis Espacio-Temporal
5.
Environ Manage ; 48(1): 109-22, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21562852

RESUMEN

The southeastern United States has experienced severe, recurrent drought, rapid human population growth, and increasing agricultural irrigation during recent decades, resulting in greater demand for the water resources. During the same time period, freshwater mussels (Unioniformes) in the region have experienced substantial population declines. Consequently, there is growing interest in determining how mussel population declines are related to activities associated with water resource development. Determining the causes of mussel population declines requires, in part, an understanding of the factors influencing mussel population dynamics. We developed Pradel reverse-time, tag-recapture models to estimate survival, recruitment, and population growth rates for three federally endangered mussel species in the Apalachicola-Chattahoochee-Flint River Basin, Georgia. The models were parameterized using mussel tag-recapture data collected over five consecutive years from Sawhatchee Creek, located in southwestern Georgia. Model estimates indicated that mussel survival was strongly and negatively related to high flows during the summer, whereas recruitment was strongly and positively related to flows during the spring and summer. Using these models, we simulated mussel population dynamics under historic (1940-1969) and current (1980-2008) flow regimes and under increasing levels of water use to evaluate the relative effectiveness of alternative minimum flow regulations. The simulations indicated that the probability of simulated mussel population extinction was at least 8 times greater under current hydrologic regimes. In addition, simulations of mussel extinction under varying levels of water use indicated that the relative risk of extinction increased with increased water use across a range of minimum flow regulations. The simulation results also indicated that our estimates of the effects of water use on mussel extinction were influenced by the assumptions about the dynamics of the system, highlighting the need for further study of mussel population dynamics.


Asunto(s)
Bivalvos , Modelos Biológicos , Ríos , Movimientos del Agua , Animales , Simulación por Computador , Dinámica Poblacional , Estaciones del Año , Sudeste de Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...