Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(8): e0308473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39133728

RESUMEN

Accurately estimating the duration of freeway incidents can enhance emergency management practices and reduce the likelihood of secondary incidents. To investigate the mechanisms through which key factors influence incident duration, this study sorted out the characteristics and variables of the incident duration on a special freeway in Zhejiang Province, that is, the ring road, and developed a latent class accelerated hazard model. Heterogeneity was incorporated into the model. Three distributions (Weibull, Log-normal, and Log-logistic) were compared, and the Log-logistic distribution exhibited superior performance. The analysis revealed two distinct latent classes: Latent Class 1 and Class 2, had class membership probability of 0.53 and 0.47, respectively, with a total of 11 variables being statistically significant at the 0.05 significance level. It is worth noting that, some neglected explanatory variables are discussed in depth in this study. For example, the mechanism of which specific lane is closed has an impact on the incident duration, rather than a general discussion of the number of lane closures. Furthermore, the way in which the driver involved in the incident reports to the police has a significant impact on the duration of incidents. Notably, potential heterogeneity and its influencing mechanism are captured in the model. Additionally, by predicting class membership using posterior probabilities, it was determined that most data points were more likely to belong to Class 1, and the incident duration primarily ranged between 0 and 60 minutes. These findings are helpful to reduce the duration of incidents on ring-roads and freeways in China, and provide theoretical support for the formulation of freeway incident management and treatment policies.


Asunto(s)
Accidentes de Tránsito , Humanos , Accidentes de Tránsito/estadística & datos numéricos , Accidentes de Tránsito/prevención & control , China/epidemiología , Factores de Tiempo , Conducción de Automóvil/estadística & datos numéricos , Modelos de Riesgos Proporcionales , Modelos Estadísticos
2.
Math Biosci Eng ; 20(1): 1106-1121, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36650804

RESUMEN

The transient electromagnetic inversion of detection signals mainly depends on fast inversion in the half-space state. However, the interpretation results have a certain degree of uncertainty and blindness, so the accuracy and applicability of the three-dimensional full-space inversion need to be investigated. Two different three-dimensional full-space inversions were carried out. First, the numerical characteristic parameters of the response signals were extracted. Then, the correlations between the numerical characteristic parameters and physical parameters of the water-bearing abnormal bodies were judged, and the judgment criterion of the iterative direction was proposed. Finally, the inversion methods of the iterative algorithm and the BP neural network were utilized based on the virtual example samples. The results illustrate that the proposed numerical characteristic parameters can accurately reflect the response curve of the full-space surrounding rock. The difference in the numerical characteristic parameters was used to determine the update direction and correction value. Both inversion methods have their advantages and disadvantages. A single inversion method cannot realize the three-dimensional inversion of the physical parameters of water-bearing abnormal bodies quickly, effectively and intelligently. Therefore, the benefits of different inversion methods need to be considered to comprehensively select a reasonable inversion method. The results can provide essential ideas for the subsequent interpretation of the three-dimensional spatial response signals of water-bearing abnormal bodies.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Agua
3.
Materials (Basel) ; 13(9)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370179

RESUMEN

The effect of nano grain surface layer generated by ultrasonic impact on the fatigue behaviors of a titanium alloy Ti3Zr2Sn3Mo25Nb (TLM) was investigated. Three vibration strike-numbers of 24,000 times, 36,000 times and 48,000 times per unit are chosen to treat the surface of TLM specimens. Nanocrystals with an average size of 30 nm are generated. The dislocation motion plays an important role in the transformation of nanograins. Ultrasonic surface impact improves the mechanical properties of TLM, such as hardness, surface residual stress, tensile strength and fatigue strength. More vibration strike numbers will cause a higher enhancement. With a vibration strike number of 48,000 times per square millimeter the rotating-bending fatigue strength of TLM at 107 cycles is improved by 23.7%. All the fatigue cracks initiate from the surface of untreated specimens, while inner cracks appear after the fatigue life of 106 cycles with the ultrasonic surface impact. The crystal slip in the crack initiation zone is the main way of growth for microcracks. Crack cores are usually formed at the junction of crystals. The stress intensity factor of TLM titanium alloy is approximately 7.0 MPa·m1/2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA