Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410828, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981687

RESUMEN

Graphene-like molecules with multiple zigzag edges are emerging as promising gain materials for organic lasers. Their emission wavelengths can vary widely, ranging from visible to near-infrared (NIR), as molecular size increases. Specifically, rhombus-shaped molecular graphenes with two pairs of parallel zigzag edges, known as [n]rhombenes, are excellent candidates for NIR lasers due to their small energy gaps. However, synthesizing large-size rhombenes with emission beyond 800 nm in solution remains a significant challenge. In this study, we present a straightforward synthesis of an aryl-substituted [4]rhombene derivative, [4]RB-Ar, using a method that combines intramolecular radical-radical coupling with Bi(OTf)3-mediated cyclization of vinyl ethers. The structure of [4]RB-Ar was confirmed through X-ray crystallographic analysis. Bond length analysis and theoretical calculations indicate that aromatic sextets are predominantly localized along the molecule's long axis. Significantly, [4]RB-Ar demonstrates narrow amplified spontaneous emission at around 834 nm when dispersed in polystyrene thin films. Moreover, solution-processed distributed feedback lasers employing [4]RB-Ar as the active gain material display tunable narrow emissions in the range of 830 to 844 nm.

2.
bioRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39026864

RESUMEN

Regional responses to inhaled toxicants are essential to understand the pathogenesis of lung disease under exposure to air pollution. We evaluated the effect of combined allergen sensitization and ozone exposure on eliciting spatial differences in lipid distribution in the mouse lung that may contribute to ozone-induced exacerbations in asthma. Lung lobes from male and female BALB/c mice were cryosectioned and acquired by high resolution mass spectrometry imaging (MSI). Processed MSI peak annotations were validated by LC-MS/MS data from scraped tissue slides and microdissected lung tissue. Images were normalized and segmented into clusters. Interestingly, segmented clusters overlapped with stained serial tissue sections, enabling statistical analysis across biological replicates for morphologically relevant lung regions. Spatially distinct lipids had higher overall degree of unsaturated fatty acids in distal lung regions compared to proximal regions. Furthermore, the airway and alveolar epithelium exhibited significantly decreased sphingolipid and glycerophospholipid abundance in females, but not in males. We demonstrate the potential role of lipid saturation in healthy lung function and highlight sex differences in regional lung lipid distribution following ozone exposure. Our study provides a framework for future MSI experiments capable of relative quantification across biological replicates and expansion to multiple sample types, including human tissue.

3.
CNS Neurosci Ther ; 30(7): e14825, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954749

RESUMEN

AIMS: Ischemic stroke remains a challenge in medical research because of the limited treatment options. Recombinant human tissue plasminogen activator (rtPA) is the primary treatment for recanalization. However, nearly 50% of the patients experience complications that result in ineffective reperfusion. The precise factors contributing to ineffective reperfusion remain unclear; however, recent studies have suggested that immune cells, notably neutrophils, may influence the outcome of rtPA thrombolysis via mechanisms such as the formation of neutrophil extracellular traps. This study aimed to explore the nonthrombolytic effects of rtPA on neutrophils and highlight their contribution to ineffective reperfusion. METHODS: We evaluated the effects of rtPA treatment on middle cerebral artery occlusion in rats. We also assessed neutrophil infiltration and activation after rtPA treatment in vitro and in vivo in a small cohort of patients with massive cerebral ischemia (MCI). RESULTS: rtPA increased neutrophil infiltration into the brain microvessels and worsened blood-brain barrier damage during ischemia. It also increased the neutrophil counts of the patients with MCI. CONCLUSION: Neutrophils play a crucial role in promoting ischemic injury and blood-brain barrier disruption, making them potential therapeutic targets.


Asunto(s)
Fibrinolíticos , Neutrófilos , Proteínas Recombinantes , Activador de Tejido Plasminógeno , Activador de Tejido Plasminógeno/farmacología , Activador de Tejido Plasminógeno/uso terapéutico , Animales , Humanos , Masculino , Neutrófilos/efectos de los fármacos , Ratas , Proteínas Recombinantes/farmacología , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratas Sprague-Dawley , Anciano , Barrera Hematoencefálica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Femenino , Infiltración Neutrófila/efectos de los fármacos , Persona de Mediana Edad , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/inmunología , Modelos Animales de Enfermedad
4.
Chem Biodivers ; : e202400977, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837616

RESUMEN

Two previously uncharacterized compounds, an aconitine-type C19-diterpenoid alkaloid (1) and a napelline-type diterpenoid alkaloid C20-diterpenoid alkaloid (2), as well as ten known compounds (3-12), were isolated from Aconitum pendulum. Their structures were elucidated based on spectroscopic data, including 1D and 2D NMR, IR, HR-ESI-MS, and single-crystal X-ray diffraction analysis. The anti-insecticidal activities of these compounds were evaluated by contact toxicity tests against two-spotted spider mites, and compounds 1, 2, and 9 showed moderate contact toxicity, with LC50 values of 0.86±0.09, 0.95±0.23, and 0.89±0.19 mg/mL, respectively. This study highlights the potential use of diterpenoid alkaloids as natural plant-derived pesticides for the management of plant pests.

5.
Cell Metab ; 36(6): 1320-1334.e9, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838643

RESUMEN

Circadian homeostasis in mammals is a key intrinsic mechanism for responding to the external environment. However, the interplay between circadian rhythms and the tumor microenvironment (TME) and its influence on metastasis are still unclear. Here, in patients with colorectal cancer (CRC), disturbances of circadian rhythm and the accumulation of monocytes and granulocytes were closely related to metastasis. Moreover, dysregulation of circadian rhythm promoted lung metastasis of CRC by inducing the accumulation of myeloid-derived suppressor cells (MDSCs) and dysfunctional CD8+ T cells in the lungs of mice. Also, gut microbiota and its derived metabolite taurocholic acid (TCA) contributed to lung metastasis of CRC by triggering the accumulation of MDSCs in mice. Mechanistically, TCA promoted glycolysis of MDSCs epigenetically by enhancing mono-methylation of H3K4 of target genes and inhibited CHIP-mediated ubiquitination of PDL1. Our study links the biological clock with MDSCs in the TME through gut microbiota/metabolites in controlling the metastatic spread of CRC, uncovering a systemic mechanism for cancer metastasis.


Asunto(s)
Relojes Circadianos , Microbioma Gastrointestinal , Células Supresoras de Origen Mieloide , Animales , Ratones , Células Supresoras de Origen Mieloide/metabolismo , Humanos , Metástasis de la Neoplasia , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Ratones Endogámicos C57BL , Masculino , Microambiente Tumoral , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/metabolismo , Femenino , Ratones Endogámicos BALB C , Línea Celular Tumoral
6.
Opt Lett ; 49(12): 3528-3531, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875662

RESUMEN

The application of a liquid crystal (LC) in displays has driven the development of novel LC elements. In this Letter, polarization variable line-space (PVLS) gratings based on photoalignment are fabricated, and their variable-spacing properties are derived using the vector diffraction theory. Both transmissive and reflective PVLS gratings are fabricated to validate the correctness of the derivation. Experimental results indicate that PVLS gratings have a wider wavelength response bandwidth than that of polarization volume grating (PVG). PVLS gratings have angle selectivity, and a large incident angle causes wavelength blueshift. Additionally, the relationship between wavelength and focal length indicates its anomalous dispersion as a diffractive optical element. These results of photoalignment-based PVLS gratings provide valuable insights for the advancement of displays and have the potential to improve visual experiences.

7.
Anal Sci ; 40(8): 1459-1473, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38900232

RESUMEN

The main reason for the high mortality rate of non-small cell lung cancer is that patients are usually diagnosed at an advanced stage of the disease. Exosomes, small membrane vesicles secreted by normal cells or tumor cells, play a significant role in the progression of NSCLC. This study successfully optimized the preparation of artificial nanoenzymes self-coupling with horseradish peroxidase (IrO2NPs@HRP-AptCD63), without adding any ligand, demonstrating remarkable catalytic activity suitable for detecting the EGFR protein on the surface of NSCLC exosomes. When fused with the CD63 aptamer for identifying NSCLC exosomes, IrO2NPs@HRP showed enhanced catalytic activity in the 3,3',5,5'-tetramethylbenzidine-H2O2 oxidation-reduction system, thereby enhancing the colorimetric signal. This phenomenon can be distinguished by the naked eye and quantified using a UV-Vis spectrophotometer. Meanwhile, as the redox reaction occurs, the current signal of 3,3',5,5'-tetramethylbenzidine-H2O2, acting as an electrolyte, changes. The developed aptasensor generates dual-mode signal outputs, firstly, to visually assess the samples for their positive or negative status, and subsequently employ more in-depth electrochemical or colorimetric analysis methods for a detailed quantitative analysis of suspected positive samples. The detection limits of electrochemical analysis and colorimetric analysis were 0.9 × 103 particles/mL and 0.14 × 103 particles/mL, respectively. Compared with traditional biomarkers such as CA125, this method exhibits exceptional specificity, capable of simultaneously distinguishing serum exosomes of healthy volunteers, COPD patients, and NSCLC patients, promoting exosome detection in mouse models for tumor monitoring. Additionally, it elucidates the changes in EGFR protein expression on the surface of serum exosomes throughout the developmental trajectory.


Asunto(s)
Aptámeros de Nucleótidos , Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Peroxidasa de Rábano Silvestre , Iridio , Neoplasias Pulmonares , Oxidación-Reducción , Exosomas/química , Exosomas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Aptámeros de Nucleótidos/química , Iridio/química , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Animales , Ratones , Nanopartículas del Metal/química , Técnicas Biosensibles
8.
CPT Pharmacometrics Syst Pharmacol ; 13(7): 1214-1223, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38736200

RESUMEN

The objective was to characterize the pharmacokinetics (PK) and pharmacodynamics (PD) of glucagon after injectable or nasal administration and confirm the appropriate therapeutic dose of nasal glucagon (NG) for adult patients. Six clinical studies with PK and five clinical studies with PD (glucose) data were included in the analysis. Doses ranging from 0.5 to 6 mg NG, and 0.5 to 1 mg injectable glucagon were studied. A total of 6284 glucagon and 7130 glucose concentrations from 265 individuals (patients and healthy participants) were available. Population PK/PD modeling was performed using NONMEM. Glucagon exposure and glucose response were simulated for patients administered various doses of NG to confirm the optimal dose. Glucagon PK was well-described with a single compartment disposition with first-order absorption and elimination processes. Bioavailability of NG relative to injectable glucagon was 16%. Exposure-response modeling revealed that lower baseline glucose was associated with higher maximum drug effect. The carry-over effect from prior insulin administration was incorporated into the model through a time-dependent increase in elimination rate of glucose. Simulations showed that more than 99% of hypoglycemic adult patients would experience treatment success, defined as an increase in blood glucose to ≥70 mg/dL or an increase of ≥20 mg/dL from nadir within 30 min after administration of NG 3 mg. The population PK/PD model adequately described the PK and PD profiles of glucagon after nasal administration. Modeling and simulations confirmed that NG 3 mg is the most appropriate dose for rescue treatment during hypoglycemia emergencies.


Asunto(s)
Administración Intranasal , Glucemia , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Glucagón , Modelos Biológicos , Humanos , Glucagón/farmacocinética , Glucagón/administración & dosificación , Adulto , Masculino , Glucemia/efectos de los fármacos , Femenino , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Persona de Mediana Edad , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Relación Dosis-Respuesta a Droga , Anciano , Adulto Joven , Disponibilidad Biológica
9.
Cell Biol Int ; 48(8): 1148-1159, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38800986

RESUMEN

Trichloroethylene (TCE) is a commonly used organic solvent in industry. Our previous studies have found that TCE can cause liver injury accompanied by macrophage polarization, but the specific mechanism is unclear. The epigenetic regulation of macrophage polarization is mainly focused on histone modification. Histone lysine demethylase 4A (KDM4A) is involved in the activation of macrophages. In this study, we used a mouse model we investigated the role of KDM4A in the livers of TCE-drinking mice and found that the expression of KDM4A, M1-type polarization indicators, and related inflammatory factors in the livers of TCE-drinking mice. In the study, BALB/c mice were randomly divided into four groups: 2.5 mg/mL TCE dose group and 5.0 mg/mL TCE dose group, the vehicle control group, and the blank control group. We found that TCE triggered M1 polarization of mouse macrophages, characterized by the expression of CD11c and robust production of inflammatory cytokines. Notably, exposure to TCE resulted in markedly increased expression of KDM4A in macrophages. Functionally, the increased expression of KDM4A significantly impaired the expression of H3K9me3 and H3K9me2 and increased the expression of H3K9me1. In addition, KDM4A potentially represents a novel epigenetic modulator, with its upregulation connected to ß-catenin activation, a signal critical for the pro-inflammatory activation of macrophages. Furthermore, KDM4A inhibitor JIB-04 treatment resulted in a decrease in ß-catenin expression and prevented TCE-induced M1 polarization and the expression of the pro-inflammatory cytokines TNF-α and IL-1ß. These results suggest that the association of KDM4A and Wnt/ß-catenin cooperatively establishes the activation and polarization of macrophages and global changes in H3K9me3/me2/me1. Our findings identify KDM4A as an essential regulator of the polarization of macrophages and the expression of inflammatory cytokines, which might serve as a potential target for preventing and treating liver injury caused by TCE.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji , Macrófagos , Ratones Endogámicos BALB C , Tricloroetileno , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Tricloroetileno/toxicidad , Activación de Macrófagos/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Citocinas/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Histona Demetilasas
10.
Heliyon ; 10(6): e28297, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533001

RESUMEN

This was an observational study of patients with benign breast tumors intended to investigate and compare the predictive value of body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) for hypertension in the recovery room. Logistic regression analysis was used to determine the association between these body fat anthropometric indices and hypertension. Receiver operating characteristic curve (ROC) analysis was performed to assess the comparative predictive ability. A total of 689 women were evaluated. Patients with BMI ≥28 (kg/m2), WC > 85 cm, WHR ≥0.82, and WHtR ≥0.5 had a significantly higher probability of increased systolic blood pressure (SBP) and diastolic blood pressure (DBP) than patients with less than threshold values (all P < 0.05). The areas under the ROC curve (AUC) of BMI, WC, and WHtR where all modestly significant (all AUC ≥0.65) and nearly identical at 0.6592, 0.65, and 0.6724, respectively. Conclusion: body fat anthropometric indices are useful predicting hypertension during recovery from general anesthesia in patients with benign breast tumors undergoing day surgery; WHtR outperformed the other indices and nearly identical.

11.
Metabolites ; 14(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38393017

RESUMEN

Liquid chromatography-high-resolution mass spectrometry (LC-HRMS), as applied to untargeted metabolomics, enables the simultaneous detection of thousands of small molecules, generating complex datasets. Alignment is a crucial step in data processing pipelines, whereby LC-MS features derived from common ions are assembled into a unified matrix amenable to further analysis. Variability in the analytical factors that influence liquid chromatography separations complicates data alignment. This is prominent when aligning data acquired in different laboratories, generated using non-identical instruments, or between batches from large-scale studies. Previously, we developed metabCombiner for aligning disparately acquired LC-MS metabolomics datasets. Here, we report significant upgrades to metabCombiner that enable the stepwise alignment of multiple untargeted LC-MS metabolomics datasets, facilitating inter-laboratory reproducibility studies. To accomplish this, a "primary" feature list is used as a template for matching compounds in "target" feature lists. We demonstrate this workflow by aligning four lipidomics datasets from core laboratories generated using each institution's in-house LC-MS instrumentation and methods. We also introduce batchCombine, an application of the metabCombiner framework for aligning experiments composed of multiple batches. metabCombiner is available as an R package on Github and Bioconductor, along with a new online version implemented as an R Shiny App.

12.
Front Aging Neurosci ; 16: 1354455, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327498

RESUMEN

Background: Freezing of gait (FOG) is a common and disabling phenomenon in patients with Parkinson's disease (PD), but effective treatment approach remains inconclusive. Dysfunctional emotional factors play a key role in FOG. Since primary motor cortex (M1) connects with prefrontal areas via the frontal longitudinal system, where are responsible for emotional regulation, we hypothesized M1 may be a potential neuromodulation target for FOG therapy. The purpose of this study is to explore whether high-frequency rTMS over bilateral M1 could relieve FOG and emotional dysregulation in patients with PD. Methods: This study is a single-center, randomized double-blind clinical trial. Forty-eight patients with PD and FOG from the Affiliated Hospital of Xuzhou Medical University were randomly assigned to receive 10 sessions of either active (N = 24) or sham (N = 24) 10 Hz rTMS over the bilateral M1. Patients were evaluated at baseline (T0), after the last session of treatment (T1) and 30 days after the last session (T2). The primary outcomes were Freezing of Gait Questionnaire (FOGQ) scores, with Timed Up and Go Test (TUG) time, Standing-Start 180° Turn (SS-180) time, SS-180 steps, United Parkinson Disease Rating Scales (UPDRS) III, Hamilton Depression scale (HAMD)-24 and Hamilton Anxiety scale (HAMA)-14 as secondary outcomes. Results: Two patients in each group dropped out at T2 and no serious adverse events were reported by any subject. Two-way repeated ANOVAs revealed significant group × time interactions in FOGQ, TUG, SS-180 turn time, SS-180 turning steps, UPDRS III, HAMD-24 and HAMA-14. Post-hoc analyses showed that compared to T0, the active group exhibited remarkable improvements in FOGQ, TUG, SS-180 turn time, SS-180 turning steps, UPDRS III, HAMD-24 and HAMA-14 at T1 and T2. No significant improvement was found in the sham group. The Spearman correlation analysis revealed a significantly positive association between the changes in HAMD-24 and HAMA-14 scores and FOGQ scores at T1. Conclusion: High-frequency rTMS over bilateral M1 can improve FOG and reduce depression and anxiety in patients with PD.

13.
Mol Neurobiol ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300447

RESUMEN

Enhancement of vascular remodeling in affected brain tissue is a novel therapy for acute ischemic stroke (AIS). However, conclusions regarding angiogenesis after AIS remain ambiguous. Vascular endothelial growth factor A (VEGFA) and VEGF receptor 2 (VEGFR2) are potent regulators of angiogenesis and vascular permeability. We aimed to investigate the association between VEGFA/VEGFR2 expression in the acute stage of stroke and prognosis of patients with AIS. We enrolled 120 patients with AIS within 24 h of stroke onset and 26 healthy controls. Plasma levels of VEGFA and VEGFR2 were measured by enzyme-linked immunosorbent assay (ELISA). The primary endpoint was an unfavorable outcome defined as a modified Rankin Scale (mRS) score > 2 at 3 months after AIS. Univariate and multivariate logistic regression analyses were used to identify risk factors affecting prognosis. Plasma VEGFA and VEGFR2 were significantly higher in patients with AIS than in health controls, and also significantly higher in patients with unfavorable than those with favorable outcomes. Moreover, both VEGFA and VEGFR2 showed a significantly positive correlation with mRS at 3 months. Univariate and multivariate analyses showed VEGFA and VEGFR2 remained associated with unfavorable outcomes, and adding VEGFA and VEGFR2 to the clinical model significantly improved risk reclassification (continuous net reclassification improvement, 105.71%; integrated discrimination improvement, 23.45%). The new risk model curve exhibited a good fit with an area under the receiver operating characteristic curve (ROC) curve of 0.9166 (0.8658-0.9674). Plasma VEGFA and VEGFR2 are potential markers for predicting prognosis; thus these two plasma biomarkers may improve risk stratification in patients with AIS.

14.
Mar Pollut Bull ; 200: 116093, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38310722

RESUMEN

Polyethylene terephthalate microplastics (PET-MPs) are one of pivotal nondegradable emerging pollutant. Here the variation of the surface physicochemical characteristics of PET-MPs with UV irradiation aging and the adsorption behaviors of PET-MPs in malachite green (MG), tetracycline (TC) solution and the effect of coexisting Cu(II) were comparatively investigated. The yellowing, weakened hydrophobicity, and increased surface negative charge, crystallinity degree and oxygen-containing functional groups were manifested specifically by the aged PET-MPs. Different from the single system, the hydrophobic interaction and metal ion bridging complexation dominated the adsorption of MG and TC, respectively, in the binary solution. While in the ternary solution, cationic ion competition of Cu(II) with MG decreased its capture, and the formation of PET-Cu(II)-TC ternary complexes promoted TC adsorption. Moreover, PET-MPs could serve as an efficient vector for MG and TC in MG/TC/Cu(II) ternary system, indicating PET-MPs tend to carry more varieties in the complex environment, that may increase the environmental risk of PET-MPs.


Asunto(s)
Microplásticos , Colorantes de Rosanilina , Contaminantes Químicos del Agua , Microplásticos/química , Plásticos , Tereftalatos Polietilenos , Contaminantes Químicos del Agua/análisis , Tetraciclina , Antibacterianos , Adsorción , Agua , Polietileno
15.
Cell Metab ; 36(3): 541-556.e9, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38232736

RESUMEN

The roles of platelets/megakaryocytes (MKs), the key components in the blood system, in the tumor microenvironment and antitumor immunity are unclear. In patients with colorectal cancer, the number of platelets was significantly increased in patients with metastasis, and Erbin expression was highly expressed in platelets from patients with metastases. Moreover, Erbin knockout in platelets/MKs suppressed lung metastasis in mice and promoted aggregations of platelets. Mechanistically, Erbin-deficient platelets have increasing mitochondrial oxidative phosphorylation and secrete lipid metabolites like acyl-carnitine (Acar) by abolishing interaction with prothrombotic protein ESAM. Notably, Acar enhanced the activity of mitochondrial electron transport chain complex and mitochondrial oxidative phosphorylation in B cells by acetylation of H3K27 epigenetically. Targeting Erbin in platelets/MKs by a nanovesicle system dramatically attenuated lung metastasis in mice in vivo. Our study identifies an Erbin-mitochondria axis in platelets/MKs, which suppresses B cell-mediated antitumor immunity, suggesting a new way for the treatment of metastasis.


Asunto(s)
Neoplasias Pulmonares , Megacariocitos , Animales , Humanos , Ratones , Plaquetas/metabolismo , Neoplasias Pulmonares/metabolismo , Megacariocitos/metabolismo , Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional , Microambiente Tumoral
16.
Cell Biol Int ; 48(4): 483-495, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38238919

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease of unknown pathogenic origin. Endoplasmic reticulum (ER) stress refers to the process by which cells take measures to ER function when the morphology and function of the reticulum are changed. Recent studies have demonstrated that the ER was involved in the evolution and progression of IPF. In this study, we obtained transcriptome data and relevant clinical information from the Gene Expression Omnibus database and conducted bioinformatics analysis. Among the 544 ER stress-related genes (ERSRGs), 78 were identified as differentially expressed genes (DEGs). These DEGs were primarily enriched in response to ER stress, protein binding, and protein processing. Two genes (HTRA2 and KTN1) were included for constructing an accurate molecular signature. The overall survival of patients was remarkably worse in the high-risk group than in the low-risk group. We further analyzed the difference in immune cells between high-risk and low-risk groups. M0 and M2 macrophages were significantly increased in the high-risk group. Our results suggested that ERSRGs might play a critical role in the development of IPF by regulating the immune microenvironment in the lungs, which provide new insights on predicting the prognosis of patients with IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Estrés del Retículo Endoplásmico/genética , Pulmón/patología , Proteínas de la Membrana
17.
Cell Transplant ; 33: 9636897241226847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288604

RESUMEN

Ischemic wounds are chronic wounds with poor blood supply that delays wound reconstruction. To accelerate wound healing and promote angiogenesis, adipose-derived stem cells (ADSCs) are ideal seed cells for stem cell-based therapies. Nevertheless, providing a favorable environment for cell proliferation and metabolism poses a substantial challenge. A highly sulfated heparin-like polysaccharide 2-N, 6-O-sulfated chitosan (26SCS)-doped poly(lactic-co-glycolic acid) scaffold (S-PLGA) can be used due to their biocompatibility, mechanical properties, and coagent 26SCS high affinity for growth factors. In this study, a nano-scaffold system, constructed from ADSCs seeded on electrospun fibers of modified PLGA, was designed to promote ischemic wound healing. The S-PLGA nanofiber membrane loaded with adipose stem cells ADSCs@S-PLGA was prepared by a co-culture in vitro, and the adhesion and compatibility of cells on the nano-scaffolds were explored. Scanning electron microscopy was used to observe the growth state and morphological changes of ADSCs after co-culture with PLGA electrospun fibers. The proliferation and apoptosis after co-culture were detected using a Cell Counting Kit-8 kit and flow cytometry, respectively. An ischemic wound model was then established, and we further studied the ability of ADSCs@S-PLGA to promote wound healing and angiogenesis. We successfully established ischemic wounds on the backs of rats and demonstrated that electrospun fibers combined with the biological effects of adipose stem cells effectively promoted wound healing and the growth of microvessels around the ischemic wounds. Phased research results can provide a theoretical and experimental basis for a new method for promoting clinical ischemic wound healing.


Asunto(s)
Quitosano , Nanofibras , Ratas , Animales , Quitosano/farmacología , Andamios del Tejido , Sulfatos/farmacología , Cicatrización de Heridas , Células Madre
18.
Environ Sci Pollut Res Int ; 31(8): 12052-12070, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225498

RESUMEN

An aluminum sludge-based composite material was constructed against the problems of phosphorus pollution and the waste of aluminum sludge resources. Utilizing metal Ce doping and hydrogel microbeads with pore preparation, the adsorption performance of the original sludge was improved. Meanwhile, the macroscopic body was constructed, and on this basis, polyethyleneimine (PEI) was introduced to complete the amino functionalization further to enhance the adsorption of phosphorus by the adsorbent, and NH-CeAIS-10 microbeads were successfully prepared. In adsorption, microbeads with larger specific surface area and richer functional groups are better choice compared to original sludge. The results of SEM, BET, FT-IR, and XPS analyses indicate that the adsorption of phosphorus by the microbeads is mainly achieved through electrostatic interactions, ligand exchange, and the formation of inner-sphere complexes. According to the Langmuir model, the maximum phosphorus adsorption capacity of NH-CeAIS-10 was 29.56 mg g-1, which was four times higher compared to native aluminum sludge. This also confirms the significant enhancement of phosphorus adsorption through the modification of aluminum sludge. Besides, in dynamic adsorption column experiments, the material exhibited up to 99% removal in simulated wastewater for up to 30 days, demonstrating the great adsorption potential of NH-CeAIS-10 in engineering applications.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Aluminio , Hidrogeles , Espectroscopía Infrarroja por Transformada de Fourier , Fósforo , Adsorción , Cinética , Concentración de Iones de Hidrógeno
19.
Nanomaterials (Basel) ; 14(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38202569

RESUMEN

Understanding plastic deformation behaviour is key to optimising the mechanical properties of nano-polycrystalline layered composites. This study employs the molecular dynamics (MD) simulation to comprehensively investigate the effects of various factors, such as grain sizes, strain rates, and the interlayer thicknesses of the intermetallic compounds (IMCs), on the plastic deformation behaviour of nano-polycrystalline Al/Mg layered composites. Our findings reveal that the influence of grain size on deformation behaviour is governed by the strain rate, and an increase in grain size is inversely proportional to yield stress at low strain rates, whereas it is positively proportional to tensile stress at high strain rates. Moreover, an optimal thickness of the intermediate layer contributes to enhanced composite strength, whereas an excessive thickness leads to reduced tensile strength due to the fewer grain boundaries (GBs) available for accommodating dislocations. The reinforcing impact of the intermediate IMCs layer diminishes at excessive strain rates, as the grains struggle to accommodate substantial large strains within a limited timeframe encountered at high strain rates. The insights into grain sizes, strain rates, and interlayer thicknesses obtained from this study enable the tailored development of nanocomposites with optimal mechanical characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...