Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(5): 5813-5822, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38272467

RESUMEN

The electrochemical kinetic processes of Li+ ions, including the desolvation of the Li+ ions from the electrolyte to the solid electrolyte interphase (SEI), the transportation of desolvated Li+ ions across the SEI, and the charge transfer at the interface between the SEI and graphite, determine the rate performance and cycling stability of the graphitic anode in lithium-ion batteries (LIBs). In this work, fluorine-terminated self-assembled monolayers were grafted on the surface of spherical graphite particles to regulate the chemical composition and structure of SEI formed on the graphite surface in the presence of conventional ester electrolytes. The comprehensive characterization and first-principles calculation results illustrate that a uniform LiF-dominated SEI film can be generated on the as-functionalized graphite anode due to the carbon-fluorine bonds' cleavage of fluorine-terminated self-assembled monolayers. The LiF-dominated SEI film is particularly beneficial for desolvated lithium-ion transport across the SEI, affording LiCoO2//graphite full cells with substantially enhanced fast-charging capability and cycle stability. This strategy should be potentially useful for modifying other anode materials to regulate the interfacial chemistry between the anode and electrolyte in lithium-ion batteries.

2.
Chemistry ; 29(12): e202203144, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36408758

RESUMEN

The cleavage of ß-O-4 linkage in lignin is one of the key steps for oxidative conversion of lignin to low-molecular-weight aromatics. Herein, Co nanoparticles embedded in three-dimensional network of nitrogen-doped graphene (Co/NG@3DNG-X) were prepared through an immersion-pyrolysis procedure, in which X denotes the pyrolysis temperature. The detailed characterization of Co/NG@3DNG-X shows that the Co nanoparticles are coated with a few layers of nitrogen-doped graphene (NG) sheets that are further embedded in 3DNG matrix. The catalytic activities of the Co/NG@3DNG-X for the oxidative cleavage of ß-O-4 linkage in lignin model compounds with O2 as oxidant are explored. It is demonstrated that catalytic activities of as-prepared Co/NG@3DNG-X can be tuned by varying the pyrolysis condition, and the Co/NG@3DNG-900 shows the highest catalytic activity, which is attributed to the enriched Co-Nx species, the strong surface basicity, the high specific surface and the mesoporous motif of 3DNG network. More pronouncedly, the Co/NG@3DNG-900 can also effectively catalyze the oxidative cleavage of organosolv lignin, generating certain monomeric aromatics. Additionally, the intrinsic magnetic property of Co nanoparticles makes the Co/NG@3DNG-X be easily recovered from the reaction mixture, and the as-coated thin NG layer can protect Co nanoparticle from oxidation condition, which putting together afford the Co/NG@3DNG-X with good reusability and stability.

3.
Chemistry ; 28(18): e202104380, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35229376

RESUMEN

Chemoselectively oxidizing Cα -OH to C=O has been considered as a key step for the oxidative depolymerization of lignin. In this work, we design and prepare a series of composites of RuCo alloy nanoparticles and reduced graphene oxide (RuCo/rGO) with different Ru to Co ratios and explore their catalytic activities in the oxidation of veratryl alcohol derivatives, which usually serve as the model compounds for studying lignin oxidation. It is illustrated that the Ru to Co ratio determines the morphology and average size of the RuCo alloy nanoparticles on rGO, and the overall catalytic activities of the composites. The RuCo alloy nanoparticles on rGO with Ru to Co ratios of 1 : 0 to 1.2 : 1 show a unique flower-shaped morphology that increases the exposure of the active sites and thus promotes their contact with the substrates. The RuCo/rGO composites exhibit high catalytic activities for the oxidation of Cα -OH to aldehydes at 100 °C for 2 h. Additionally, the Co component affords the RuCo/rGO composites with magnetic properties that make the separation and recovery of the catalyst simple. Given the high catalytic performances and easy recovery, the RuCo/rGO composites would be potentially useful for the depolymerization of lignin.


Asunto(s)
Grafito , Alcoholes Bencílicos , Catálisis , Grafito/química , Oxidación-Reducción
4.
Inorg Chem ; 60(23): 17635-17640, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34747595

RESUMEN

Catalytic chemical degradations and many other methodologies have been explored for the removal and/or degradation of organophosphorus agents (OPs) that are often used as pesticides, nerve agents, and plasticizers. To explore more efficient and recyclable catalysts for the removal and/or degradation of OPs, we fabricate the composites of cobalt nanoparticles and three-dimensional nitrogen-doped graphene (Co/3DNG). We demonstrate that OPs can be hydrolyzed efficiently at ambient temperature by the Co/3DNG. Because of the unique structural and chemical properties of the supporting matrix 3DNG and active species Co-N, the catalytic activities of Co/3DNG composites are much higher than those of bare 3DNG, Co nanoparticles, or the Co nanoparticles physically mixed with 3DNG. We conclude that in the Co/3DNG composites, the interaction between 3DNG and Co stabilizes and distributes well the Co nanoparticles and affords the active catalytic species Co-N.

5.
ACS Appl Mater Interfaces ; 13(8): 9875-9884, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33606490

RESUMEN

Gel electrolytes show certain advantages over conventional liquid and solid electrolytes, but their mechanical strength and surface adhesion to the electrode remain to be improved. To address the challenges, we design and fabricate herein the core-shell nanofiber mats in situ on the LiFePO4 electrode as matrices for gel electrolytes, in which the core is poly(m-phenylene isophthalamide) (PMIA) nanofiber and the shell are composite of Al2O3 nanoparticles and poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP). The mechanical property of the core-shell polymeric nanofiber mats and their surface interaction with LiFePO4 electrode are characterized complementarily using dynamic thermomechanical analysis and scanning electron microscopy. The electrochemical properties of the gel electrolytes based on the as-prepared matrices after being loaded with lithium salt solution are studied systematically on half coin cells. It is found that the ultimate strength of the core-shell PMIA@PVdF-HFP/Al2O3 mat can reach 6.70 MPa, 2 times higher than that of the PVdF-HFP/Al2O3 nanofiber mat. Meanwhile, the shell PVdF-HFP/Al2O3 can ensure manifest surface affinity to the LiFePO4 electrode and enhance lithium-ion conductance. Thus, the as-assembled LiFePO4 half coin cells using PMIA@PVdF-HFP/Al2O3 gel electrolyte show good electrochemical performances, especially the long cycle stability with the capacity retention of 96.6% after 600 cycles under 1C.

6.
Nanotechnology ; 29(43): 43LT01, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30084387

RESUMEN

Flexible micro-supercapacitors (MSCs) as power suppliers are important for portable and wearable electronic devices. Despite enormous efforts made, a simple, inexpensive high-throughput technique of graphene-based MSCs is still challenging. In this work, flexible MSCs are fabricated through commercial laser printing of the interdigital configuration of reduced graphene oxide-graphene oxide-reduced graphene oxide (rGO-GO-rGO) where the conductive rGO works as the electrode and the insulated GO serves as the separator. We demonstrate that the as-fabricated MSC devices show high-energy storage capacities, good cyclic stability and remarkable flexibility. The relationship between the geometric parameters (integration level and coverage fraction) and the capacitive performance of the MSCs is studied systematically to build better theoretical guidance for the design of future in-plane MSCs.

7.
ACS Appl Mater Interfaces ; 10(3): 2612-2618, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29297677

RESUMEN

Tetravalent metal phosphates (M(HPO4)2, M = Zr, Sn, and Ti) have robust layered structures with interlayer d spacings over 7.5 Å, but show poor electrical conductivity. On the other hand, single-atomic-layered reduced graphene oxide (rGO) sheets exhibit a high electrical conductivity. In this work, the combination of rGO and M(HPO4)2 is explored for their potential as anode materials for lithium ion batteries (LIBs). Specifically, rGO/M(HPO4)2 composites are prepared, and their electrochemical performances are investigated systematically. In comparison with bare M(HPO4)2, the rGO/M(HPO4)2 composites exhibit larger specific capacity, higher rate capability, better cyclic stability, lower voltage for lithium ion insertion and extraction, and improved first Coulombic efficiency. We propose that the superior electrochemical performances of the composites are primarily contributed to the large interlayer space of M(HPO4)2 and the rGO sheets cladded on the surfaces of the layered M(HPO4)2. The attached rGO sheets bridge the layers together forming a network that is beneficial for the electron and ion diffusion within the composites, thus enhancing the discharge/charge rate capability of the composites. In addition, the attached rGO sheets provide extra anchoring sites for Li+; the specific capacity of the composites as anode materials is thus enhanced.

8.
Phys Chem Chem Phys ; 17(27): 18185-92, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26102361

RESUMEN

An efficient carbon-polyaniline (PANI)-coated method was applied for perovskite-type oxide LaFeO3 to enhance its high-temperature electrochemical performance. Transmission electron microscopy (TEM) results reveal that LaFeO3 particles are evenly coated with carbon and PANI hybrid layers after carbon-PANI treatment. The carbon layers prevent the nanosized LaFeO3 particles from aggregation and allow the electrolyte to penetrate in every direction inside the particles. The PANI layers also enhance the electrocatalytic activity, facilitating hydrogen protons transferring from the electrolyte to the electrode interface. The cooperation of carbon and PANI hybrid layers results in a significant enhancement of the electrochemical performance at high temperatures. At an elevated temperature (60 °C), the maximum discharge capacity of the LaFeO3 electrodes remarkably increases from 231 mA h g(-1) to 402 mA h g(-1) and the high rate dischargeability at a discharge current density of 1500 mA g(-1) (HRD1500) increases from 22.7% to 44.3%. Moreover, the hybrid layers mitigate the corrosion of LaFeO3 electrodes by reducing the loss of active materials in the alkaline electrolyte, leading to increase in the capacity retention rate from 67.1% to 77.6% after 100 cycles (S100).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...