Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 12(11): 2047-60, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11090208

RESUMEN

The Arabidopsis EMB30 gene is essential for controlling the polarity of cell growth and for normal cell adhesion during seedling development. In this article, we show that emb30 mutations also affect the growth of undifferentiated plant cells and adult tissues. EMB30 possesses a Sec7 domain and, based on similarities to other proteins, presumably functions in the secretory pathway. The plant cell wall depends on the secretory pathway to deliver its complex polysaccharides. We show that emb30 mutants have a cell wall defect that sometimes allows material to be deposited into the interstitial space between cells instead of being restricted to cell corners. In addition, pectin, a complex polysaccharide important for cell adhesion, appears to be abnormally localized in emb30 plants. In contrast, localization of epitopes associated with xyloglucan or arabinogalactan was similar in wild-type and emb30 tissues, and the localization of a marker molecule to vacuoles appeared normal. Therefore, emb30 mutations do not cause a general defect in the secretory pathway. Together, these results suggest that emb30 mutations result in an abnormal cell wall, which in turn may account for the defects in cell adhesion and polar cell growth control observed in the mutants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Pared Celular/ultraestructura , Factores de Intercambio de Guanina Nucleótido , Mutación , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Microscopía Inmunoelectrónica , Morfogénesis , Pectinas/metabolismo , Polisacáridos/metabolismo
2.
J Immunol ; 165(6): 3430-5, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10975863

RESUMEN

Inducible NO synthase (iNOS) present in human atherosclerotic plaques could contribute to the inflammatory process of plaque development. The role of iNOS in atherosclerosis was tested directly by evaluating the development of lesions in atherosclerosis-susceptible apolipoprotein E (apoE)-/- mice that were also deficient in iNOS. ApoE-/- and iNOS-/- mice were cross-bred to produce apoE-/-/iNOS-/- mice and apoE-/-/iNOS+/+ controls. Males and females were placed on a high fat diet at the time of weaning, and atherosclerosis was evaluated at two time points by different methods. The deficiency in iNOS had no effect on plasma cholesterol, triglyceride, or nitrate levels. Morphometric measurement of lesion area in the aortic root at 16 wk showed a 30-50% reduction in apoE-/-/iNOS-/- mice compared with apoE-/-/iNOS+/+ mice. Although the size of the lesions in apoE-/-/iNOS-/- mice was reduced, the lesions maintained a ratio of fibrotic:foam cell-rich:necrotic areas that was similar to controls. Biochemical measurements of aortic cholesterol in additional groups of mice at 22 wk revealed significant 45-70% reductions in both male and female apoE-/-/iNOS-/- mice compared with control mice. The results indicate that iNOS contributes to the size of atherosclerotic lesions in apoE-deficient mice, perhaps through a direct effect at the site of the lesion.


Asunto(s)
Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Arteriosclerosis/enzimología , Arteriosclerosis/genética , Óxido Nítrico Sintasa/deficiencia , Óxido Nítrico Sintasa/genética , Animales , Aorta/enzimología , Aorta/metabolismo , Arteriosclerosis/sangre , Arteriosclerosis/patología , Colesterol/sangre , Colesterol/metabolismo , Femenino , Predisposición Genética a la Enfermedad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nitratos/sangre , Óxido Nítrico Sintasa/biosíntesis , Óxido Nítrico Sintasa de Tipo II , Triglicéridos/sangre
3.
J Bacteriol ; 177(5): 1268-74, 1995 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-7868601

RESUMEN

The ada gene of Escherichia coli K-12 encodes the 39-kDa Ada protein, which consists of two domains joined by a hinge region that is sensitive to proteolytic cleavage in vitro. The amino-terminal domain has a DNA methyltransferase activity that repairs the S-diastereoisomer of methylphosphotriesters while the carboxyl-terminal domain has a DNA methyltransferase activity that repairs O6-methylguanine and O4-methylthymine lesions. Transfer of a methyl group to Cys-69 by repair of a methylphosphotriester lesion converts Ada into a transcriptional activator of the ada and alkA genes. Activation of ada, but not alkA, requires elements contained within the carboxyl-terminal domain of Ada. In addition, physiologically relevant concentrations of the unmethylated form of Ada specifically inhibit methylated Ada-promoted ada transcription both in vitro and in vivo and it has been suggested that this phenomenon plays a pivotal role in the down-regulation of the adaptive response. A set of site-directed mutations were generated within the hinge region, changing the lysine residue at position 178 to leucine, valine, glycine, tyrosine, arginine, cysteine, proline, and serine. All eight mutant proteins have deficiencies in their ability to activate ada transcription in the presence or absence of a methylating agent but are proficient in alkA activation. AdaK178P (lysine 178 changed to proline) is completely defective for the transcriptional activation function of ada while it is completely proficient for transcriptional activation of alkA. In addition, AdaK178P possesses both classes of DNA repair activities both in vitro and in vivo. Transcriptional activation of ada does not occur if both the amino- and carboxyl-terminal domains are produced separately within the same cell. The mutation at position 178 might interfere with activation of ada transcription by changing a critical contact with RNA polymerase, by causing a conformational change of Ada, or by interfering with the communication of conformational information between the amino- and the carboxyl-terminal domains. These results indicate that the hinge region of Ada is important for ada but not alkA transcription and further support the notion that the mechanism(s) by which Ada activates ada transcription differs from that by which it activates transcription at alkA.


Asunto(s)
Proteínas Bacterianas/genética , ADN Glicosilasas , Proteínas de Escherichia coli , Escherichia coli/genética , Metiltransferasas/genética , N-Glicosil Hidrolasas/genética , Transcripción Genética , Adaptación Fisiológica/genética , Proteínas Bacterianas/biosíntesis , Secuencia de Bases , Reparación del ADN/genética , Activación Enzimática , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Lisina/genética , Metiltransferasas/biosíntesis , Datos de Secuencia Molecular , Complejos Multienzimáticos/biosíntesis , Complejos Multienzimáticos/genética , Mutación , N-Glicosil Hidrolasas/biosíntesis , O(6)-Metilguanina-ADN Metiltransferasa , Relación Estructura-Actividad , Factores de Transcripción
4.
Cell ; 77(7): 1051-62, 1994 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-8020095

RESUMEN

The EMB30 gene is involved in apical-basal pattern formation in the Arabidopsis embryo. Mutations in this locus produce mutants with a wide range of seedling phenotypes, but all of the mutants lack a root and a true hypocotyl. We have cloned the EMB30 gene, and it encodes a protein that has similarity to the yeast Sec7 protein and to two other open reading frames identified in clones from humans and C. elegans. We refer to the region of similarity among these four sequences as the Sec7 domain. The emb30-1 allele has a mutation in the Sec7 domain that alters a residue conserved in all four of these sequences, suggesting that this domain may be important for EMB30 function. Molecular data and microscopy studies of emb30 seedlings presented here indicate that EMB30 affects cell division, elongation, and adhesion and functions in seedling and adult plants as well as during embryogenic pattern formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Moléculas de Adhesión Celular/genética , Genes de Plantas , Factores de Intercambio de Guanina Nucleótido , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , División Celular , Secuencia de Consenso , Expresión Génica , Datos de Secuencia Molecular , ARN Mensajero/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Distribución Tisular
5.
Proc Natl Acad Sci U S A ; 88(20): 9001-5, 1991 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-1924363

RESUMEN

The adaptive response of Escherichia coli protects cells against the mutagenic and toxic effects of alkylating agents. This response is controlled by the Ada protein, which not only functions as the transcriptional activator of the ada and alkA genes but also possesses two DNA methyltransferae activities. Ada is converted into an efficient transcriptional activator by transferring a methyl group from a DNA methylphosphotriester to its own Cys-69 residue and then binds to a DNA sequence (the Ada box) present in both the ada and alkA promoters. Although the Ada protein initially appeared to regulate the ada and alkA genes in a similar fashion, our studies show that the wild-type Ada protein and its truncated derivatives can differentially regulate ada and alkA transcription. In vivo, lower levels of wild-type methylated Ada are needed to activate ada transcription than alkA transcription. In cells exposed to alkylating agents, the N-terminal half of Ada, which contains the DNA-binding domain, is sufficient for efficient activation of alkA, but not ada, transcription. Moreover, truncated derivatives containing 80-90% of Ada are extremely strong constitutive activators of ada but are only inducible activators of alkA transcription. These results suggest that the mechanism by which Ada activates ada transcription differs from that by which it activates alkA transcription.


Asunto(s)
Alquilantes/farmacología , Proteínas Bacterianas/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Metilnitronitrosoguanidina/farmacología , Transcripción Genética , beta-Galactosidasa/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Deleción Cromosómica , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , O(6)-Metilguanina-ADN Metiltransferasa , Oligodesoxirribonucleótidos , Plásmidos , Proteínas Recombinantes de Fusión/metabolismo , Mapeo Restrictivo , Factores de Transcripción , beta-Galactosidasa/metabolismo
7.
J Bacteriol ; 170(11): 5263-71, 1988 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-3141384

RESUMEN

The ada gene of Escherichia coli K-12 encodes the regulatory protein for the adaptive response to alkylating agents. A set of plasmids carrying ordered deletions from the 3' end of the ada gene were isolated and characterized. These ada deletions encode fusion proteins that derive their amino termini from ada and their carboxyl termini from the downstream vector sequence that occurs before an in-frame stop codon. Several of these ada deletions encode Ada derivatives that constitutively activate ada transcription to very high levels. A second class of ada deletions encode Ada derivatives that are dominant inhibitors of the inducible transcription of ada but are inducible activators of alkA transcription. In addition, we found that two Ada derivatives containing the same ada sequences but fused to different vector-derived tails have strikingly different properties. One Ada derivative constitutively activates both ada and alkA expression to very high levels. In contrast, the other Ada derivative is an inducible activator of ada expression, like the wild-type Ada protein, but is not an inducible activator of alkA transcription. Our data suggest that the carboxyl terminus of the Ada protein plays a key role in modulating the ability of the Ada protein to function as a transcriptional activator.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Genes Bacterianos , Genes , Transcripción Genética , Alelos , Secuencia de Aminoácidos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/fisiología , Vectores Genéticos , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , O(6)-Metilguanina-ADN Metiltransferasa , Plásmidos , Regiones Promotoras Genéticas , Factores de Transcripción , beta-Galactosidasa/metabolismo
8.
J Bacteriol ; 170(7): 3294-6, 1988 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-3290202

RESUMEN

We constructed an ada deletion by gene replacement in a recD1014 strain of Escherichia coli. Characterization of a delta ada-25 recD+ strain revealed the presence of a second DNA methyltransferase activity in E. coli K-12 which transfers a methyl group from methylated DNA to a protein with a molecular weight of 18,000 to 20,000.


Asunto(s)
Proteínas Bacterianas/genética , Reparación del ADN , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Metiltransferasas/metabolismo , Alquilación , Deleción Cromosómica , Escherichia coli/enzimología , Genes Bacterianos , Metilación , Mutación , O(6)-Metilguanina-ADN Metiltransferasa , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...