Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 756
Filtrar
1.
Genes (Basel) ; 15(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39202458

RESUMEN

Human populations have interacted throughout history, and a considerable portion of modern human populations show evidence of admixture. Local ancestry inference (LAI) is focused on detecting the genetic ancestry of chromosomal segments in admixed individuals and has wide applications. In this work, we proposed a new LAI method based on population-specific single-nucleotide polymorphisms (SNPs) and applied it in the analysis of admixed populations in the 1000 Genomes Project (1KGP). Based on population-specific SNPs in a sliding window, we computed local ancestry information vectors, which are moment estimators of local ancestral proportions, for two haplotypes of an admixed individual and inferred the local ancestral origins. Then we used African (AFR), East Asian (EAS), European (EUR) and South Asian (SAS) populations from the 1KGP and indigenous American (AMR) populations from the Human Genome Diversity Project (HGDP) as reference populations and conducted the proposed LAI analysis on African American populations and American populations in the 1KGP. The results were compared with those obtained by RFMix, G-Nomix and FLARE. We demonstrated that the existence of alleles in a chromosomal region that are specific to a particular reference population and the absence of alleles specific to the other reference populations provide reasonable evidence for determining the ancestral origin of the region. Contemporary AFR, AMR and EUR populations approximate ancestral populations of the admixed populations well, and the results from RFMix, G-Nomix and FLARE largely agree with those from the Ancestral Spectrum Analyzer (ASA), in which the proposed method was implemented. When admixtures are ancient and contemporary reference populations do not satisfactorily approximate ancestral populations, the performances of RFMix, G-Nomix and FLARE deteriorate with increased error rates and fragmented chromosomal segments. In contrast, our method provides fair results.


Asunto(s)
Genética de Población , Genoma Humano , Polimorfismo de Nucleótido Simple , Humanos , Polimorfismo de Nucleótido Simple/genética , Genética de Población/métodos , Haplotipos/genética , Proyecto Genoma Humano , Población Blanca/genética , Población Negra/genética , Pueblo Asiatico/genética
2.
Anal Chim Acta ; 1319: 342980, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39122289

RESUMEN

The traditional preparation method of ratiometric probes faces challenges such as cumbersome preparation and low sensitivity. Thus, there is an urgent need to provide a simple method of preparing a highly sensitive ratiometric probe. Here, Eu3+-doped zinc-based organic framework (Eu/Zn-MOF) was prepared through hydrothermal method for the detection of tetracycline analogs (TCs). Under the same excitation conditions, the probe can simultaneously display valuable fluorescence and second-order scattering signals. The developed probe enabled specific identification and fast detection (1 min) of TCs, including tetracycline, oxytetracycline, doxycycline, and chlortetracycline. The linear detection ranges of tetracycline, oxytetracycline, doxycycline and chlortetracycline were respectively 100 nM - 200 µM, 100 nM - 200 µM, 98 nM - 195 µM, and 97 nM - 291 µM, and the corresponding detection limits were respectively 15.79 nM, 20.83 nM, 15.31 nM, and 28.30 nM. The developed sensor was successfully applied to detect TCs in real samples, and the recovery rate was from 92.54 % to 109.69 % and the relative standard deviation was from 0.04 % to 2.97 %. Moreover, the heterometallic Eu/Zn-MOF was designed as a ratiometric neuron for Boolean logic computing and information encryption based on the specific identification of TCs. As a proof of concept, molecular steganography was successfully employed to encode, store, and conceal information by transforming the specific identification patterns of Eu/Zn-MOF into binary strings. This study is anticipated to advance the application of metal-organic frameworks in logic detection and information security, and bridging the gap between molecular sensors and the realm of information.


Asunto(s)
Europio , Estructuras Metalorgánicas , Espectrometría de Fluorescencia , Zinc , Estructuras Metalorgánicas/química , Europio/química , Zinc/química , Zinc/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Tetraciclinas/análisis , Límite de Detección , Antibacterianos/análisis , Tetraciclina/análisis , Fluorescencia
3.
Nano Lett ; 24(32): 9839-9845, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087826

RESUMEN

Hard carbon (HC) is a promising anode candidate for Na-ion batteries (NIBs) because of its excellent Na-storage performance, abundance, and low cost. However, a precise understanding of its Na-storage behavior remains elusive. Herein, based on the D2O/H2SO4-based TMS results collected on charged/discharged state HC electrodes, detailed Na-storage mechanisms (the Na-storage states and active sites in different voltage regions), specific SEI dynamic evolution process (formation, rupture, regeneration and loss), and irreversible capacity contribution (dead Na0, NaH, etc.) were elucidated. Moreover, by employing the online electrochemical mass spectrometry (OEMS) to monitor the gassing behavior of HC-Na half-cell during the overdischarging process, a surprising rehydrogen evolution reaction (re-HER) process at around 0.02 V vs Na+/Na was identified, indicating the occurrence of Na-plating above 0 V vs Na+/Na. Additionally, the typical fluorine ethylene carbonate (FEC) additive was demonstrated to reduce the accumulation of dead Na0 and inhibit the re-HER process triggered by plated Na.

4.
Angew Chem Int Ed Engl ; : e202412214, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141606

RESUMEN

Electrolyte engineering is crucial for improving cathode electrolyte interphase (CEI) to enhance the performance of lithium-ion batteries, especially at high charging cut-off voltages. However, typical electrolyte modification strategies always focus on the solvation structure in the bulk region, but consistently neglect the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which directly influences the CEI construction. Herein, we reveal an anti-synergy effect between Li+-solvation and interfacial electric field by visualizing the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which determines the concentration of interfacial solvated-Li+. The Li+ solvation in the charging process facilitates the construction of a concentrated (Li+-solvent/anion-rich) interface and anion-derived CEI, while the repulsive force derived from interfacial electric field induces the formation of a diluted (solvent-rich) interface and solvent-derived CEI. Modifying the electrochemical protocols and electrolyte formulation, we regulate the "inflection voltage" arising from the anti-synergy effect and prolong the lifetime of the concentrated interface, which further improves the functionality of CEI architecture.

5.
World J Gastrointest Oncol ; 16(8): 3471-3480, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39171175

RESUMEN

BACKGROUND: The intrapapillary capillary loop (IPCL) characteristics, visualized using magnifying endoscopy, are commonly assessed for preoperative evaluation of the infiltration depth of esophageal squamous cell carcinoma (ESCC). Japan Esophageal Society (JES) classification is the most widely used classification. Microvascular structural changes are evaluated by magnifying endoscopy for the presence or absence of each morphological factor: tortuosity, dilatation, irregular caliber, and different shapes. However, the pathological characteristics of IPCLs have not been thoroughly investigated, especially the microvascular structures corresponding to the deepest parts of the lesions' infiltration. AIM: To investigate differences in pathological microvascular structures of ESCC, which correspond to the deepest parts of the lesions' infiltration. METHODS: Patients with ESCC and precancerous lesions diagnosed at Peking University Third Hospital were enrolled between January 2019 and April 2023. Patients first underwent magnified endoscopic examination, followed by endoscopic submucosal dissection or surgical treatment. Pathological images were scanned using a three-dimensional slice scanner, and the pathological structural differences in different types, according to the JES classification, were analyzed using nonparametric tests and t-tests. RESULTS: The 35 lesions were divided into four groups according to the JES classification: A, B1, B2, and B3. Statistical analyses revealed significant differences (a P < 0.05) in the short and long calibers, area, location, and density between types A and B. Notably, there were no significant differences in these parameters between types B1 and B2 and between types B2 and B3 (P > 0.05). However, significant differences in the short calibers, long calibers, and area of IPCL were observed between types B1 and B3 (a P < 0.05); no significant differences were found in the density or location (P > 0.05). CONCLUSION: Pathological structures of IPCLs in the deepest infiltrating regions differ among various IPCL types classified by the JES classification under magnifying endoscopy, especially between the types A and B.

6.
J Am Chem Soc ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39197103

RESUMEN

Nitrate (NO3-) in wastewater poses a serious threat to human health and the ecological environment. The electrocatalytic NO3- reduction to ammonia (NH3) reaction (NO3-RR) emerges as a promising carbon-free energy route for enabling NO3- removal and sustainable NH3 synthesis. However, it remains a challenge to achieve high Faraday efficiencies at a wide potential window due to the complex multiple-electron reduction process. Herein, spatially separated dual-metal tandem electrocatalysts made of a nitrogen-doped ordered mesoporous carbon support with ultrasmall and high-content Cu nanoparticles encapsulated inside and large and low-content Ru nanoparticles dispersed on the external surface (denoted as Ru/Cu@NOMC) are designed. In electrocatalytic NO3-RR, the Cu sites can quickly convert NO3- to adsorbed NO2- (*NO2-), while the Ru sites can efficiently produce active hydrogen (*H) to enhance the kinetics of converting *NO2- to NH3 on the Cu sites. Due to the synergistic effect between the Cu and Ru sites, Ru/Cu@NOMC exhibits a maximum NH3 Faradaic efficiency (FENH3) of approximately 100% at -0.1 V vs reversible hydrogen electrode (RHE) and a high NH3 yield rate of 1267 mmol gcat-1 h-1 at -0.5 V vs RHE. Finite element method (FEM) simulation and electrochemical in situ Raman spectroscopy revealed that the mesoporous framework can enhance the intermediate concentration due to the in situ confinement effect. Thanks to the Cu-Ru synergistic effect and the mesopore confinement effect, a wide potential window of approximately 500 mV for FENH3 over 90% and a superior stability for NH3 production over 156 h can be achieved on the Ru/Cu@NOMC catalyst.

7.
Vaccines (Basel) ; 12(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39203953

RESUMEN

Background: Protein-based pneumococcal vaccines (PBPVs) may offer expanded protection against Streptococcus pneumoniae and tackle the antimicrobial resistance crisis in pneumococcal infections. This study examined the safety and immunogenicity in healthy adults vaccinated with three doses of a protein-based pneumococcal vaccine containing pneumococcal surface protein A (PspA) (PRX1, P3296 and P5668) and in combination with a recombinant detoxified pneumolysin protein (PlyLD). Methods: This phase Ia randomized, double blind, placebo-controlled clinical study enrolled healthy adults aged 18-49 years. The participants were randomized into experimental (low-dose, medium-dose, high-dose) and placebo groups in a ratio of 3:1. Three doses of investigational vaccine were given to the participants with an interval of two months. Safety endpoints included the occurrence of total adverse reactions, solicited local and systemic adverse reactions, unsolicited adverse reactions, serious adverse events (SAEs), and several laboratory parameters. Immunogenicity endpoints included geometric mean titers (GMT) of anti-PspA (PRX1, P3296 and P5668) and anti-PlyLD antibodies level as determined by ELISA, seropositivity rates of PspA and PlyLD antibodies (>4-fold increase) and neutralization activity of anti-Ply antibody in serum. Results: A total of 118 participants completed the study of three doses. The candidate PBPV was safe and well-tolerated in all experimental groups. No vaccine-related SAEs were observed in this study. Most solicited adverse reactions were mild and transient. The most frequently reported solicited adverse reactions in the medium- and high-dose groups was pain at the injection site, while in the low-dose group it was elevated blood pressure. The immunogenicity data showed a sharp increase in the GMT level of anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies in serum. The results also showed that the elicited antibodies were dosage-dependent. The high-dose group showed a higher immune response against PspA-RX1, PspA-3296, PspA-5668, and PlyLD antigens. However, repeat vaccination did not increase the level of anti-PspA antibodies but the level of anti-PlyLD antibody. High seropositivity rates were also observed for anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies. In addition, a significant difference in the GMT levels of anti-Ply antibody between the high-, medium-, and low-dose groups post each vaccination were indicated by neutralization activity tests. Conclusions: The PBPV showed a safe and immunogenic profile in this clinical trial. Taking into consideration both safety and immunogenicity data, we propose a single dose of 50 µg (medium dose) of PBPV as the optimum approach in providing expanded protection against Streptococcus pneumoniae.

8.
Anal Chem ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185581

RESUMEN

The spatial constraints imposed by the DNA structure have significant implications for the walking efficiency of three-dimensional DNA walkers. However, accurately quantifying and manipulating steric hindrance remains a challenging task. This study presents a steric hindrance-controlled DNA walker utilizing an enzymatic strand displacement amplification (ESDA) strategy for detecting microRNA-21 (miR-21) with tunable dynamic range and sensitivity. The steric hindrance of the DNA walker was precisely manipulated by varying the length of empty bases from 6.5 Što 27.4 Šat the end of the track strand and adjusting the volumetric dimensions of the hairpin structure from 9.13 nm3 to 26.2 nm3 at the terminus of the single-foot DNA walking strand. This method demonstrated a tunable limit of detection for miR-21 ranging from 3.6 aM to 35.6 nM, along with a dynamic range from ∼100-fold to ∼166 000-fold. Impressively, it exhibited successful identification of cancer cells and clinical serum samples with high miR-21 expression. The proposed novel strategy not only enables tunable detection of miRNA through the regulation of steric hindrance but also achieves accurate and quantitative analysis of the steric hindrance effect, promising broader applications in personalized medicine, early disease detection, and drug development.

9.
Nano Lett ; 24(34): 10642-10649, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39158134

RESUMEN

CO poisoning in Pt-based anode catalysts significantly hampers the proton exchange membrane fuel cell (PEMFC) performance. Despite great advances in CO-tolerant catalysts, their effectiveness is often limited to fundamental three-electrode systems, which is inadequate for practical PEMFC applications. Herein, we present a straightforward thermal oxidation strategy for constructing a Ru oxide blocking layer on commercial PtRu/C through a one-step Ru-segregation-and-oxidation process. The resulting 0.7 nm thick Ru oxide layer effectively inhibits CO adsorption while maintaining hydrogen oxidation activity. PtRu@RuO2/C demonstrates exceptional CO tolerance, enduring 1% CO in rotating disk electrode tests, an ∼10-fold improvement compared to that of PtRu/C. Crucially, it retains high HOR activity and CO tolerance in PEMFC, with negligible polarization curve loss in the presence of 100 ppm CO. Notably, 85% HOR activity is retained after a 4 h stability test. This enhancement contributes to the Ru oxide layer decelerating CO adsorption kinetics, rather than promoting CO oxidation via the classic bifunctional mechanism.

10.
Small ; : e2406110, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113670

RESUMEN

In this study, state-of-the-art on-line pyrolysis MS (OP-MS) equipped with temperature-controlled cold trap and on-line pyrolysis GC/MS (OP-GC/MS) injected through high-vacuum negative-pressure gas sampling (HVNPGS) programming are originally designed/constructed to identify/quantify the dynamic change of common permanent gases and micromolecule organics from the anode/cathode-electrolyte reactions during thermal runaway (TR) process, and corresponding TR mechanisms are further perfected/complemented. On LiCx anode side, solid electrolyte interphase (SEI) would undergo continuous decomposition and regeneration, and the R-H+ (e.g., HF, ROH, etc.) species derived from electrolyte decomposition would continue to react with Li/LiCx to generate H2. Up to above 200 °C, the O2 would release from the charged NCM cathode and organic radicals would be consumed/oxidized by evolved O2 to form COx, H2O, and more corrosive HF. On the contrary, charged LFP cathode does not present obvious O2 evolution during heating process and the unreacted flammable/toxic organic species would exit in the form of high temperature/high-pressure (HT/HP) vapors within batteries, indicating higher potential safety risks. Additionally, the in depth understanding of the TR mechanism outlined above provides a clear direction for the design/modification of thermostable electrodes and non-flammable electrolytes for safer batteries.

11.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124896

RESUMEN

Three pairs of enantiomers and one achiral molecule that are new ethylated derivatives of sulfur and nitrogen-containing compounds named mantidisamides E-H (1-4), along with twenty known ones (5-24), were derived from the ethanol extract of Tenodera sinensis Saussure. The structures of these new compounds and their absolute configurations were assigned on the basis of spectroscopic analyses and computational methods. The assessment of activities in NRK-52e cells induced by TGF-ß1 demonstrated that the previously undescribed compounds 1 and 2 exhibited a significant capacity to inhibit the expression of proteins (fibronectin, collagen I, and α-SMA). Moreover, the biological activity of these compounds was found to increase with rising concentrations. Notably, compounds 1-4 should be artifacts; however, undescribed compounds 1 and 2, which possessed obvious biological activity, might be attractive for chemists and biologists due to the potential for more detailed exploration of their properties. It is worth mentioning that compounds 1 and 2 remain novel structures even in the absence of the ethoxy group.


Asunto(s)
Nitrógeno , Animales , Ratas , Nitrógeno/química , Azufre/química , Línea Celular , Estructura Molecular , Fibrosis
12.
Anal Sci ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014280

RESUMEN

Ratiometric fluorescence detection is endowed with higher accuracy than single fluorescence signal assay. In this work, we construct a ratiometric fluorescence probe for the facile quantification of sulfadimethoxine (SDM) in foods. By wrapping N-doped carbon dots (N-CDs) and gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8), the nanocomposite of N-CDs/AuNCs@ZIF-8 is facilely prepared and emits two fluorescence including 475 nm from N-CDs and 650 nm from AuNCs. Since bovine serum albumin (BSA) is the stabilizer of AuNCs, SDM can form a complex with BSA, resulting in the fluorescence quenching of AuNCs at 650 nm by a static quenching mechanism. In contrast, SDM has a rare influence on the fluorescence of N-CDs (475 nm). As a result, the use of the probe of N-CDs/AuNCs@ZIF-8 for SDM detection enables simultaneous measurement of response signal and reference signal. Under the optimal condition, the SDM assay based on the probe has a good linear relationship within 10 to 2 × 106 ng/mL and the limit of detection (LOD) is low to 1.064 ng/mL. In addition, the fluorescent probe shows good reliability for the detection of SDM in practical food samples.

14.
ACS Nano ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051970

RESUMEN

Electrorefinery of polybutylene terephthalate (PBT) waste plastic, specifically conversion of a PBT-derived 1,4-butanediol (BDO) monomer into value-added succinate coupled with H2 production, emerges as an auspicious strategy to mitigate severe plastic pollution. Herein, we report the synthesis of Mn-doped NiNDA nanosheets (NDA: 2,6-naphthalenedicarboxylic acid), a metal-organic framework (MOF) through a ligand exchange method, and its utilization for electrocatalytic BDO oxidation to succinate. Interestingly, the transformation of doped layered-hydroxide (d-LH) precursors to MOF promotes BDO oxidation while hindering the competitive oxygen evolution reaction. Experimental and theoretical results indicate that the MOF has a higher affinity (i.e., alcoholophilic) for BDO than the d-LH, while Mn doping into NiNDA results in electron accumulation at Ni sites with an upward shift in the d-band center and convenient spin-dependent charge transfer, which are all beneficial for BDO oxidation. The as-constructed two-electrode membrane-electrode assembly (MEA) flow cell, by coupling BDO oxidation and hydrogen evolution reaction, attains an industrial current density of 1.5 A cm-2@1.82 V at 50 °C, corresponding to a specific energy consumption of 3.68 kWh/Nm3 H2. This represents an energy saving of >25% for hydrogen production on an industrial scale compared to conventional water electrolysis (∼5 kWh/Nm3 H2) in addition to the production of valuable chemicals.

15.
Adv Mater ; : e2407720, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032096

RESUMEN

Compensating for the irreversible loss of limited active sodium (Na) is crucial for enhancing the energy density of practical sodium-ion batteries (SIBs) full-cell, especially when employing hard carbon anode with initially lower coulombic efficiency. Introducing sacrificial cathode presodiation agents, particularly those that own potential anionic oxidation activity with a high theoretical capacity, can provide additional sodium sources for compensating Na loss. Herein, Ni atoms are precisely implanted at the Na sites within Na2O framework, obtaining a (Na0.89Ni0.05□0.06)2O (Ni-Na2O) presodiation agent. The synergistic interaction between Na vacancies and Ni catalyst effectively tunes the band structure, forming moderate Ni-O covalent bonds, activating the oxidation activity of oxygen anion, reducing the decomposition overpotential to 2.8 V (vs Na/Na+), and achieving a high presodiation capacity of 710 mAh/g≈Na2O (Na2O decomposition rate >80%). Incorporating currently-modified presodiation agent with Na3V2(PO4)3 and Na2/3Ni2/3Mn1/3O2 cathodes, the energy density of corresponding Na-ion full-cells presents an essential improvement of 23.9% and 19.3%, respectively. Further, not limited to Ni-Na2O, the structure-function relationship between the anionic oxidation mechanism and electrode-electrolyte interface fabrication is revealed as a paradigm for the development of sacrificial cathode presodiation agent.

16.
Infect Drug Resist ; 17: 2513-2529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919832

RESUMEN

Background: Minocycline, a derivative of tetracycline, has anti-Helicobacter pylori (H. pylori) properties and can be used to treat H. pylori infection. However, only a few randomized controlled trials (RCTs) have investigated the efficacy of minocycline-containing quadruple therapy (MCQT) in treating H. pylori infection. This study aimed to determine the efficacy and safety of MCQT and investigate the factors influencing both aspects. Methods: This was a retrospective cohort study. Patients diagnosed with H. pylori infection between January 1, 2022, and July 31, 2023 at. The primary outcome was the eradication rate of H. pylori, and the secondary outcome was the number and type of adverse events. Results: A total of 828 patients were included in this study. The overall H. pylori eradication rate among the included patients at 95% confidence interval (CI) (Range 0.864 to 0.907) was 88.53%. The H. pylori eradication rate for patients who received MCQT regimen as the primary therapy was 92.28% (95% CI: 0.901-0.945), significantly higher than that of patients who received MCQT as rescue therapy (80.81%; 95% CI: 0.761-0.855, P=0.003). Adverse events, including dizziness, abdominal distension, diarrhea, nausea, abdominal discomfort, constipation, headache, rash, sleep disorder, palpitation, backache, and anorexia, occurred in 185 (22.34%) patients, with dizziness being the most common (75/828, 9.06%). Compliance with MCQT therapy was an independent factor influencing H. pylori eradication in patients receiving MCQT as a primary therapy. Compliance and presence or absence of H. pylori infection symptoms at the time of screening were independent factors influencing H. Pylori eradication in patients receiving MCQT as rescue therapy. Factors that influenced the occurrence of adverse events included reasons for H. pylori infection screening, residence, treatment compliance, and the use of acid-suppressant regimens. Conclusion: MCQT regimens were effective in H. pylori infection eradication, and the treatment resulted only in fewer adverse events when used as primary or rescue therapies for H. pylori infection treatment. Future prospective studies with larger sample sizes and more comprehensive data are needed to validate our findings.

17.
J Am Chem Soc ; 146(25): 17103-17113, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869216

RESUMEN

Understanding the interfacial hydrogen evolution reaction (HER) is crucial to regulate the electrochemical behavior in aqueous zinc batteries. However, the mechanism of HER related to solvation chemistry remains elusive, especially the time-dependent dynamic evolution of the hydrogen bond (H-bond) under an electric field. Herein, we combine in situ spectroscopy with molecular dynamics simulation to unravel the dynamic evolution of the interfacial solvation structure. We find two critical change processes involving Zn-electroplating/stripping, including the initial electric double layer establishment to form an H2O-rich interface (abrupt change) and the subsequent dynamic evolution of an H-bond (gradual change). Moreover, the number of H-bonds increases, and their strength weakens in comparison with the bulk electrolyte under bias potential during Zn2+ desolvation, forming a diluted interface, resulting in massive hydrogen production. On the contrary, a concentrated interface (H-bond number decreases and strength enhances) is formed and produces a small amount of hydrogen during Zn2+ solvation. The insights on the above results contribute to deciphering the H-bond evolution with competition/corrosion HER during Zn-electroplating/stripping and clarifying the essence of electrochemical window widened and HER suppression by high concentration. This work presents a new strategy for aqueous electrolyte regulation by benchmarking the abrupt change of the interfacial state under an electric field as a zinc performance-enhancement criterion.

18.
Transl Pediatr ; 13(5): 705-715, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38840676

RESUMEN

Background: The calcium-binding protein 4 (CABP4) gene is a newly identified epilepsy-related gene that might be associated with a rare type of genetic focal epilepsy; that is, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In vitro, mutant CABP4 causes an increased inward flow voltage of calcium ions and a significant increase in the electrical signal discharge in hippocampus neurons; however, the role of CABP4 in epilepsy has not yet been specifically described, and there is not yet a CABP4 mutant animal model recapitulating the epilepsy phenotype. Methods: We introduced a human CABP4 missense mutation into the C57BL/6J mouse genome and generated a knock-in strain carrying a glycine-to-aspartic acid mutation in the gene. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to evaluate the CABP4 expression level. Slice patch-clamp recording was carried out on pyramidal cells of prefrontal cortex layers II and III. Results: The CABP4G155D/+ mutant mice were viable and born at an expected Mendelian ratio. Surprisingly, the heterozygous (HE) mice did not display either an abnormal appearance or an overt seizure phenotype, and there was no statistically significant difference between the HE and wild-type (WT) mice in terms of overall messenger RNA (mRNA) and protein expression. However, the HE mutant mice showed an imbalance in the amount of protein expressed in the brain regions. Additionally, the patch-clamp recordings from the HE mouse layer II/III cortical pyramidal cells revealed an increase in the frequency of micro-excitatory post-synaptic currents (mEPSCs) but no change in the amplitude was observed. Conclusions: The findings of this study suggest that the CABP4 p.G155D mutation might be one of the mechanisms underlying seizure onset.

19.
Mol Ther Oncol ; 32(2): 200809, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38845744

RESUMEN

Oncolytic virotherapy represents a promising approach in cancer immunotherapy. The primary delivery method for oncolytic viruses (OVs) is intratumoral injection, which apparently limits their clinical application. For patients with advanced cancer with disseminated metastasis, systemic administration is considered the optimal approach. However, the direct delivery of naked viruses through intravenous injection presents challenges, including rapid clearance by the immune system, inadequate accumulation in tumors, and significant side effects. Consequently, the development of drug delivery strategies has led to the emergence of various bio-materials serving as viral vectors, thereby improving the anti-tumor efficacy of oncolytic virotherapy. This review provides an overview of innovative strategies for delivering OVs, with a focus on nanoparticle-based or cell-based delivery systems. Recent pre-clinical and clinical studies are examined to highlight the enhanced efficacy of systemic delivery using these novel platforms. In addition, prevalent challenges in current research are briefly discussed, and potential solutions are proposed.

20.
Transl Cancer Res ; 13(5): 2561-2563, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881921

RESUMEN

Background: Endometrial adenosarcoma is an unusual type of uterine tumor that features a seemingly benign epithelial component, paired with a low-grade sarcomatous component, usually similar in appearance to endometrial stromal sarcoma. To our knowledge, no image of endometrial adenocarcinoma in the cesarean scar diverticulum has been reported previously. Case Description: We present a rare case of endometrial adenocarcinoma located in the cesarean scar diverticulum of a 44-year-old patient. The patient was admitted to our hospital complaining of irregular vaginal bleeding that had lasted for over two months. Both B-ultrasound and magnetic resonance imaging confirmed a mass at the junction of the corpus uteri and cervix. After the initial curettage failed to confirm the disease, a hysteroscopy was subsequently performed. Upon further pathological analysis, a diagnosis of endometrial adenosarcoma was confirmed. The patient underwent hysterectomy and salpingo-oophorectomy. The patient was discharged home four days after the surgery and remained recurrence-free for one year after follow-up. Conclusions: Hysteroscopy can serve as a valuable diagnostic tool to identify the lesion in this unique scenario, particularly when curettage fails to diagnose this uncommon condition. We hope that this case would bring awareness of this potential scenario, enabling clinicians in the future to identify similar cases more readily.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA