Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Phenomics ; 6: 0194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974378

RESUMEN

Harvesting robots had difficulty extracting filament phenotypes for small, numerous filaments, heavy cross-obscuration, and similar phenotypic characteristics with organs. Robots experience difficulty in localizing under near-colored backgrounds and fuzzy contour features. It cannot accurately harvest filaments for robots. Therefore, a method for detecting and locating filament picking points based on an improved DeepLabv3+ algorithm is proposed in this study. A lightweight network structure, ShuffletNetV2, was used to replace the backbone network Xception of the traditional DeepLabv3+. Convolutional branches for 3 different sampling rates were added to extract information on the safflower features under the receptive field. Convolutional block attention was incorporated into feature extraction at the coding and decoding layers to solve the interference problem of the near-color background in the feature-fusion process. Then, using the region of interest of the safflower branch obtained by the improved DeepLabv3+, an algorithm for filament picking-point localization was designed based on barycenter projection. The tests demonstrated that this method was capable of accurately localizing the filament. The mean pixel accuracy and mean intersection over union of the improved DeepLabv3+ were 95.84% and 96.87%, respectively. The detection rate and weights file size required were superior to those of other algorithms. In the localization test, the depth-measurement distance between the depth camera and target safflower filament was 450 to 510 mm, which minimized the visual-localization error. The average localization and picking success rates were 92.50% and 90.83%, respectively. The results show that the proposed localization method offers a viable approach for accurate harvesting localization.

2.
Cancer Med ; 13(14): e70012, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031012

RESUMEN

OBJECTIVE: Cuproptosis is a novel cell death dependent on mitochondrial respiration and regulated by copper. This study aimed to investigate the cuproptosis-related gene DLAT potential value in gastric cancer (GC). METHODS: Bioinformatics was used to analyze DLAT expression. DLAT expression in GC cell lines was detected using qRT-PCR. Cell proliferation ability was assessed using CCK8 and cell cycle assay. Cell migration and invasion were assessed using wound healing and transwell assay. A prognostic assessment was performed through survival and Cox regression analysis. DLAT protein expression was analyzed through HPA immunohistochemistry. Biological functions and processes were analyzed through GO and KEGG enrichment analysis and PPI. Correlation with immune cell infiltration and immune checkpoint genes was analyzed for DLAT. RESULTS: DLAT expression was upregulated in GC tissues and cells and correlated with shorter survival for patients. Age, gender, histological typing, lymph node metastasis, and distant metastasis were identified as independent prognostic factors affecting OS in GC. DLAT protein was upregulated in GC. The biological functions and pathways enriched in DLAT were mainly linked to mitochondrial respiration and the TCA cycle. The expression of DLAT was found to be positively correlated with the infiltration of Th and Th2 immune cells and only positively correlated with the expression of the BTN2A1 immune checkpoint gene. CONCLUSION: DLAT has the potential to serve as a prognostic assessment factor in GC. The expression of DLAT was correlated with immune infiltration and tumor immune escape, providing a new target for immunotherapy of GC.


Asunto(s)
Biomarcadores de Tumor , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/metabolismo , Pronóstico , Masculino , Microambiente Tumoral/inmunología , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Persona de Mediana Edad , Proliferación Celular , Regulación hacia Arriba , Anciano
3.
Hum Vaccin Immunother ; 20(1): 2342592, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38714327

RESUMEN

Messenger ribonucleic acid (mRNA) technology has been rapidly applied for the development of the COVID-19 vaccine. However, naked mRNA itself is inherently unstable. Lipid nanoparticles (LNPs) protect mRNAs from extracellular ribonucleases and facilitate mRNA trafficking. For mRNA vaccines, antigen-presenting cells utilize LNPs through uptake to elicit antigen-specific immunity. There are reports on the impact of various physical characteristics of LNPs, particularly those with sizes less than 200 nm, especially 50 to 150 nm, on the overall stability and protective efficacy of mRNA vaccines. To address this, a single change in the size of LNPs using the same mRNA stock solution was assessed for the physicochemical characterization of the resulting mRNA-LNPs vaccine, along with the evaluation of their protective efficacy. Particles of smaller sizes generally disperse more effectively in solutions, with minimized occurrence of particle precipitation and aggregation. Here, we demonstrate that the vaccine containing 80-100 nm mRNA-LNPs showed the best stability and protection at 4°C and -20°C. Furthermore, we can conclude that freezing the vaccine at -20°C is more appropriate for maintaining stability over the long term. This effort is poised to provide a scientific basis for improving the quality of ongoing mRNA vaccine endeavors and providing information on the development of novel products.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Lípidos , Nanopartículas , Tamaño de la Partícula , SARS-CoV-2 , Vacunas de ARNm , Nanopartículas/química , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , COVID-19/inmunología , Lípidos/química , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Animales , Ratones , Anticuerpos Antivirales/inmunología , Femenino , ARN Mensajero/inmunología , ARN Mensajero/genética , Estabilidad de Medicamentos , Inmunogenicidad Vacunal , Humanos , Ratones Endogámicos BALB C , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Liposomas
4.
Mol Biotechnol ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448731

RESUMEN

Gastric cancer (GC) remains a major disease of high morbidity and mortality worldwide despite advances in diagnosis and treatment. Ras homolog family member T1 (RHOT1) plays an important role in several cancers. Our study aimed to analyze RHOT1 expression, to assess the relationship between its expression and the prognosis of patients, and know the impact of RHOT1 on GC cells. The Cancer Genome Atlas (TCGA) RNA-seq data was used for gene expression analysis, survival and prognostic analysis. Nomograms were created to analyze the pathological factors of GC patients. RHOT1 expression was up-regulated by analyzed TCGA-Stomach adenocarcinoma (STAD) data and verified by Polymerase Chain Reaction (PCR) assay in GC tissues and cell lines. Furthermore, RHOT1 up-regulation was significantly associated with shorter survival of GC patients. At last, after silencing the expression of RHOT1 in AGS cell lines, we found that the proliferative ability of the cells was significantly reduced, the cell invasion ability was significantly inhibited, the cell migration ability was also significantly weakened, the cell cycle was arrested in the G0/G1 phase, and apoptosis was significantly increased. So RHOT1 could impact the apoptosis, proliferation, invasion, and migration behavior of GC cells. We trust RHOT1 has the potential to become a new oncogene biomarker for diagnosis and prognosis as well as a new therapeutic target in GC.

5.
Materials (Basel) ; 13(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167579

RESUMEN

Nickel slags can be produced through ferronickel preparation by the pyrometallurgical processing of laterite nickel ores; however, such techniques are underutilized at present, and serious environmental problems arise from the stockpiling of such nickel ores. In this study, a modification to the process of ferronickel preparation by the direct reduction of carbon bases in laterite nickel ores is proposed. The gangue from the ore is used as a raw material to prepare a cementitious material, with the main components of tricalcium silicate and tricalcium aluminate. By using FactSage software, thermodynamic calculations are performed to analyze the reduction of nickel and iron and the effect of reduction on the formation of tricalcium silicate and tricalcium aluminate. The feasibility of a coupled process to prepare ferronickel and cementitious materials by the direct reduction of laterite nickel ore and gangue calcination, respectively, is discussed under varying thermodynamic conditions. Different warming strategies are applied to experimentally verify the coupled reactions. The coupled preparation of ferronickel and cementitious materials with calcium silicate and calcium aluminate as the main phases in the same experimental process is realized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...