Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
bioRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39149230

RESUMEN

SARS-CoV-2 continues to pose a threat to public health. Current therapeutics remain limited to direct acting antivirals that lack distinct mechanisms of action and are already showing signs of viral resistance. The virus encodes an ADP-ribosylhydrolase macrodomain (Mac1) that plays an important role in the coronaviral lifecycle by suppressing host innate immune responses. Genetic inactivation of Mac1 abrogates viral replication in vivo by potentiating host innate immune responses. However, it is unknown whether this can be achieved by pharmacologic inhibition and can therefore be exploited therapeutically. Here we report a potent and selective lead small molecule, AVI-4206, that is effective in an in vivo model of SARS-CoV-2 infection. Cellular models indicate that AVI-4206 has high target engagement and can weakly inhibit viral replication in a gamma interferon- and Mac1 catalytic activity-dependent manner; a stronger antiviral effect for AVI-4206 is observed in human airway organoids. In an animal model of severe SARS-CoV-2 infection, AVI-4206 reduces viral replication, potentiates innate immune responses, and leads to a survival benefit. Our results pharmacologically validate Mac1 as a therapeutic target via a novel immune-restoring mechanism that could potentially synergize with existing therapies targeting distinct, essential aspects of the coronaviral life cycle. This approach could be more widely used to target other viral macrodomains to develop antiviral therapeutics beyond COVID-19.

2.
Adv Mater ; : e2403701, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148215

RESUMEN

Targeting complementary pathways in diseases such as cancer can be achieved with co-delivery of small interfering ribonucleic acid (siRNA) and small molecule drugs; however, current formulation strategies are typically limited to one, but not both. Here, ionizable small molecule drugs and siRNA are co-formulated in drug-rich nanoparticles. Ionizable analogs of the selective estrogen receptor degrader fulvestrant self-assemble into colloidal drug aggregates and cause endosomal disruption, allowing co-delivery of siRNA against a non-druggable target. siRNA is encapsulated in lipid-stabilized, drug-rich colloidal nanoparticles where the ionizable lipid used in conventional lipid nanoparticles is replaced with an ionizable fulvestrant analog. The selection of an appropriate phospholipid and formulation buffer enables endocytosis and potent reporter gene knockdown in cancer cells. Importantly, siRNA targeting cyclin E1 is effectively delivered to drug-resistant breast cancer cells, demonstrating the utility of this approach. This strategy opens the possibility of using ionizable drugs to co-deliver RNA and ultimately improve therapeutic outcomes.

3.
bioRxiv ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39026784

RESUMEN

Virtual libraries for ligand discovery have recently increased 10,000-fold, and this is thought to have improved hit rates and potencies from library docking. This idea has not, however, been experimentally tested in direct comparisons of larger-vs-smaller libraries. Meanwhile, though libraries have exploded, the scale of experimental testing has little changed, with often only dozens of high-ranked molecules investigated, making interpretation of hit rates and affinities uncertain. Accordingly, we docked a 1.7 billion molecule virtual library against the model enzyme AmpC ß-lactamase, testing 1,521 new molecules and comparing the results to the same screen with a library of 99 million molecules, where only 44 molecules were tested. Encouragingly, the larger screen outperformed the smaller one: hit rates improved by two-fold, more new scaffolds were discovered, and potency improved. Overall, 50-fold more inhibitors were found, supporting the idea that there are many more compounds to be discovered than are being tested. With so many compounds evaluated, we could ask how the results vary with number tested, sampling smaller sets at random from the 1521. Hit rates and affinities were highly variable when we only sampled dozens of molecules, and it was only when we included several hundred molecules that results converged. As docking scores improved, so too did the likelihood of a molecule binding; hit rates improved steadily with docking score, as did affinities. This also appeared true on reanalysis of large-scale results against the σ2 and dopamine D4 receptors. It may be that as the scale of both the virtual libraries and their testing grows, not only are better ligands found but so too does our ability to rank them.

4.
bioRxiv ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39071262

RESUMEN

While large library docking has discovered potent ligands for multiple targets, as the libraries have grown, the very top of the hit-lists can become populated with artifacts that cheat our scoring functions. Though these cheating molecules are rare, they become ever-more dominant with library growth. Here, we investigate rescoring top-ranked molecules from docking screens with orthogonal methods to identify these artifacts, exploring implicit solvent models and absolute binding free energy perturbation (AB-FEP) as cross-filters. In retrospective studies, this approach deprioritized high-ranking non-binders for nine targets while leaving true ligands relatively unaffected. We tested the method prospectively against results from large library docking AmpC ß-lactamase. From the very top of the docking hit lists, we prioritized 128 molecules for synthesis and experimental testing, a mixture of 39 molecules that rescoring flagged as likely cheaters and another 89 that were plausible true actives. None of the 39 predicted cheating compounds inhibited AmpC up to 200 µ M in enzyme assays, while 57% of the 89 plausible true actives did do so, with 19 of them inhibiting the enzyme with apparent K i values better than 50 µ M . As our libraries continue to grow, a strategy of catching docking artifacts by rescoring with orthogonal methods may find wide use in the field.

5.
J Med Chem ; 67(12): 10263-10274, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38864383

RESUMEN

Colloidal aggregation is one of the largest contributors to false positives in early drug discovery. Here, we consider aggregation's role in cell-based infectivity assays in Covid-19 drug repurposing. We investigated the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate the impact of aggregation on antiviral efficacy in cells, we presaturated the colloidal drug suspensions with BSA or spun them down by centrifugation and measured the effects on spike pseudovirus infectivity. Antiviral potencies diminished by at least 10-fold following both BSA and centrifugation treatments, supporting a colloid-based mechanism. Aggregates induced puncta of the labeled spike protein in fluorescence microscopy, consistent with sequestration of the protein on the colloidal particles. These observations suggest that colloidal aggregation is common among cell-based antiviral drug repurposing and offers rapid counter-screens to detect and eliminate these artifacts.


Asunto(s)
Antivirales , Coloides , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , Humanos , SARS-CoV-2/efectos de los fármacos , Coloides/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , COVID-19/virología
6.
Cell ; 187(14): 3712-3725.e34, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38810646

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked ∼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.


Asunto(s)
Aminofenoles , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Simulación del Acoplamiento Molecular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Aminofenoles/farmacología , Aminofenoles/química , Aminofenoles/uso terapéutico , Descubrimiento de Drogas , Microscopía por Crioelectrón , Quinolonas/farmacología , Quinolonas/química , Quinolonas/uso terapéutico , Sitio Alostérico/efectos de los fármacos , Animales , Ligandos
7.
Science ; 384(6702): eadn6354, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753765

RESUMEN

AlphaFold2 (AF2) models have had wide impact but mixed success in retrospective ligand recognition. We prospectively docked large libraries against unrefined AF2 models of the σ2 and serotonin 2A (5-HT2A) receptors, testing hundreds of new molecules and comparing results with those obtained from docking against the experimental structures. Hit rates were high and similar for the experimental and AF2 structures, as were affinities. Success in docking against the AF2 models was achieved despite differences between orthosteric residue conformations in the AF2 models and the experimental structures. Determination of the cryo-electron microscopy structure for one of the more potent 5-HT2A ligands from the AF2 docking revealed residue accommodations that resembled the AF2 prediction. AF2 models may sample conformations that differ from experimental structures but remain low energy and relevant for ligand discovery, extending the domain of structure-based drug design.


Asunto(s)
Aprendizaje Profundo , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Receptor de Serotonina 5-HT2A , Agonistas del Receptor de Serotonina 5-HT2 , Antagonistas del Receptor de Serotonina 5-HT2 , Humanos , Microscopía por Crioelectrón , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Ligandos , Conformación Proteica , Pliegue de Proteína , Receptor de Serotonina 5-HT2A/química , Receptor de Serotonina 5-HT2A/ultraestructura , Receptores sigma/química , Receptores sigma/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Agonistas del Receptor de Serotonina 5-HT2/química , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/química , Antagonistas del Receptor de Serotonina 5-HT2/farmacología
8.
ACS Pharmacol Transl Sci ; 7(4): 1086-1100, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38633591

RESUMEN

Here, we demonstrate a structure-based small molecule virtual screening and lead optimization pipeline using a homology model of a difficult-to-drug G-protein-coupled receptor (GPCR) target. Protease-activated receptor 4 (PAR4) is activated by thrombin cleavage, revealing a tethered ligand that activates the receptor, making PAR4 a challenging target. A virtual screen of a make-on-demand chemical library yielded a one-hit compound. From the single-hit compound, we developed a novel series of PAR4 antagonists. Subsequent lead optimization via simultaneous virtual library searches and structure-based rational design efforts led to potent antagonists of thrombin-induced activation. Interestingly, this series of antagonists was active against PAR4 activation by the native protease thrombin cleavage but not the synthetic PAR4 agonist peptide AYPGKF.

9.
Nat Chem Biol ; 20(9): 1133-1143, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38528119

RESUMEN

The µ-opioid receptor (µOR) represents an important target of therapeutic and abused drugs. So far, most understanding of µOR activity has focused on a subset of known signal transducers and regulatory molecules. Yet µOR signaling is coordinated by additional proteins in the interaction network of the activated receptor, which have largely remained invisible given the lack of technologies to interrogate these networks systematically. Here we describe a proteomics and computational approach to map the proximal proteome of the activated µOR and to extract subcellular location, trafficking and functional partners of G-protein-coupled receptor (GPCR) activity. We demonstrate that distinct opioid agonists exert differences in the µOR proximal proteome mediated by endocytosis and endosomal sorting. Moreover, we identify two new µOR network components, EYA4 and KCTD12, which are recruited on the basis of receptor-triggered G-protein activation and might form a previously unrecognized buffering system for G-protein activity broadly modulating cellular GPCR signaling.


Asunto(s)
Proteoma , Proteómica , Receptores Opioides mu , Receptores Opioides mu/metabolismo , Receptores Opioides mu/agonistas , Proteoma/metabolismo , Humanos , Proteómica/métodos , Transducción de Señal , Células HEK293 , Endocitosis , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas
10.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38328157

RESUMEN

Large library docking can reveal unexpected chemotypes that complement the structures of biological targets. Seeking new agonists for the cannabinoid-1 receptor (CB1R), we docked 74 million tangible molecules, prioritizing 46 high ranking ones for de novo synthesis and testing. Nine were active by radioligand competition, a 20% hit-rate. Structure-based optimization of one of the most potent of these (Ki = 0.7 uM) led to '4042, a 1.9 nM ligand and a full CB1R agonist. A cryo-EM structure of the purified enantiomer of '4042 ('1350) in complex with CB1R-Gi1 confirmed its docked pose. The new agonist was strongly analgesic, with generally a 5-10-fold therapeutic window over sedation and catalepsy and no observable conditioned place preference. These findings suggest that new cannabinoid chemotypes may disentangle characteristic cannabinoid side-effects from their analgesia, supporting the further development of cannabinoids as pain therapeutics.

11.
J Chem Inf Model ; 64(2): 425-434, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38191997

RESUMEN

Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of great current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures, the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry. For each prospective ligand pose, we apply the symmetry operation of the fibril to generate a self-interacting and fibril-interacting stack, checking that doing so will not cause a clash between the original molecule and its image. Absent a clash, we retain that pose and add the ligand-ligand van der Waals energy to the ligand's docking score (here using DOCK3.8). We can check these geometries and energies using an implementation of ANI, a neural-network-based quantum-mechanical evaluation of the ligand stacking energies. In retrospective calculations, symmetry docking can reproduce the poses of three tau PET tracers whose structures have been determined. More convincingly, in a prospective study, SymDOCK predicted the structure of the PET tracer MK-6240 bound in a symmetrical stack to AD PHF tau before that structure was determined; the docked pose was used to determine how MK-6240 fit the cryo-EM density. In proof-of-concept studies, SymDOCK enriched known ligands over property-matched decoys in retrospective screens without sacrificing docking speed and can address large library screens that seek new symmetrical stackers. Future applications of this approach will be considered.


Asunto(s)
Proteínas , Estudios Prospectivos , Ligandos , Estudios Retrospectivos , Proteínas/química , Simulación del Acoplamiento Molecular , Unión Proteica , Sitios de Unión
12.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38187536

RESUMEN

AlphaFold2 (AF2) and RosettaFold have greatly expanded the number of structures available for structure-based ligand discovery, even though retrospective studies have cast doubt on their direct usefulness for that goal. Here, we tested unrefined AF2 models prospectively, comparing experimental hit-rates and affinities from large library docking against AF2 models vs the same screens targeting experimental structures of the same receptors. In retrospective docking screens against the σ2 and the 5-HT2A receptors, the AF2 structures struggled to recapitulate ligands that we had previously found docking against the receptors' experimental structures, consistent with published results. Prospective large library docking against the AF2 models, however, yielded similar hit rates for both receptors versus docking against experimentally-derived structures; hundreds of molecules were prioritized and tested against each model and each structure of each receptor. The success of the AF2 models was achieved despite differences in orthosteric pocket residue conformations for both targets versus the experimental structures. Intriguingly, against the 5-HT2A receptor the most potent, subtype-selective agonists were discovered via docking against the AF2 model, not the experimental structure. To understand this from a molecular perspective, a cryoEM structure was determined for one of the more potent and selective ligands to emerge from docking against the AF2 model of the 5-HT2A receptor. Our findings suggest that AF2 models may sample conformations that are relevant for ligand discovery, much extending the domain of applicability of structure-based ligand discovery.

13.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38234749

RESUMEN

Drugs acting as positive allosteric modulators (PAMs) to enhance the activation of the calcium sensing receptor (CaSR) and to suppress parathyroid hormone (PTH) secretion can treat hyperparathyroidism but suffer from side effects including hypocalcemia and arrhythmias. Seeking new CaSR modulators, we docked libraries of 2.7 million and 1.2 billion molecules against transforming pockets in the active-state receptor dimer structure. Consistent with simulations suggesting that docking improves with library size, billion-molecule docking found new PAMs with a hit rate that was 2.7-fold higher than the million-molecule library and with hits up to 37-fold more potent. Structure-based optimization of ligands from both campaigns led to nanomolar leads, one of which was advanced to animal testing. This PAM displays 100-fold the potency of the standard of care, cinacalcet, in ex vivo organ assays, and reduces serum PTH levels in mice by up to 80% without the hypocalcemia typical of CaSR drugs. Cryo-EM structures with the new PAMs show that they induce residue rearrangements in the binding pockets and promote CaSR dimer conformations that are closer to the G-protein coupled state compared to established drugs. These findings highlight the promise of large library docking for therapeutic leads, especially when combined with experimental structure determination and mechanism.

14.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37745391

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, while its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify novel CFTR modulators. We docked ~155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered novel mid-nanomolar potentiators as well as inhibitors that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.

15.
Nat Commun ; 14(1): 8067, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057319

RESUMEN

The lipid prostaglandin E2 (PGE2) mediates inflammatory pain by activating G protein-coupled receptors, including the prostaglandin E2 receptor 4 (EP4R). Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce nociception by inhibiting prostaglandin synthesis, however, the disruption of upstream prostanoid biosynthesis can lead to pleiotropic effects including gastrointestinal bleeding and cardiac complications. In contrast, by acting downstream, EP4R antagonists may act specifically as anti-inflammatory agents and, to date, no selective EP4R antagonists have been approved for human use. In this work, seeking to diversify EP4R antagonist scaffolds, we computationally dock over 400 million compounds against an EP4R crystal structure and experimentally validate 71 highly ranked, de novo synthesized molecules. Further, we show how structure-based optimization of initial docking hits identifies a potent and selective antagonist with 16 nanomolar potency. Finally, we demonstrate favorable pharmacokinetics for the discovered compound as well as anti-allodynic and anti-inflammatory activity in several preclinical pain models in mice.


Asunto(s)
Dinoprostona , Receptores de Prostaglandina , Humanos , Ratones , Animales , Fagocitosis , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dolor/tratamiento farmacológico , Antiinflamatorios no Esteroideos/farmacología
17.
bioRxiv ; 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37961414

RESUMEN

Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of much current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry. For each prospective ligand pose, we apply the symmetry operation of the fibril to generate a self-interacting and fibril-interacting stack, checking that doing so will not cause a clash between the original molecule and its image. Absent a clash, we retain that pose and add the ligand-ligand van der Waals energy to the ligand's docking score (here using DOCK3.8). We can check these geometries and energies using an implementation of ANI, a neural network-based quantum-mechanical evaluation of the ligand stacking energies. In retrospective calculations, symmetry docking can reproduce the poses of three tau PET tracers whose structures have been determined. More convincingly, in a prospective study SymDOCK predicted the structure of the PET tracer MK-6240 bound in a symmetrical stack to AD PHF tau before that structure was determined; the docked pose was used to determine how MK-6240 fit the cryo-EM density. In proof-of-concept studies, SymDOCK enriched known ligands over property-matched decoys in retrospective screens without sacrificing docking speed, and can address large library screens that seek new symmetrical stackers. Future applications of this approach will be considered.

18.
bioRxiv ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961552

RESUMEN

Colloidal aggregation is one of the largest contributors to false-positives in early drug discovery and chemical biology. Much work has focused on its impact on pure-protein screens; here we consider aggregations role in cell-based infectivity assays in Covid-19 drug repurposing. We began by investigating the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal-particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate antiviral efficacy of the drugs in cells we used spike pseudotyped lentivirus and pre-saturation of the colloids with BSA. The antiviral potency of the aggregators was diminished by at least 10-fold and often entirely eliminated in the presence of BSA, suggesting antiviral activity can be attributed to the non-specific nature of the colloids. In confocal microscopy, the aggregates induced fluorescent puncta of labeled spike protein, consistent with sequestration of the protein on the colloidal particles. Addition of either non-ionic detergent or of BSA disrupted these puncta. These observations suggest that colloidal aggregation is common among cell-based anti-viral drug repurposing, and perhaps cell-based assays more broadly, and offers rapid counter-screens to detect and eliminate these artifacts, allowing the community invest resources in compounds with true potential as a Covid-19 therapeutic.

19.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790438

RESUMEN

Positron Emission Tomography (PET) ligands have advanced Alzheimer's disease (AD) diagnosis and treatment. Using autoradiography and cryo-EM, we identified AD brain tissue with elevated tau burden, purified filaments, and determined the structure of second-generation high avidity PET ligand MK-6240 at 2.31 Å resolution, which bound at a 1:1 ratio within the cleft of tau paired-helical filament (PHF), engaging with glutamine 351, lysine K353, and isoleucine 360. This information elucidates the basis of MK-6240 PET in quantifying PHF deposits in AD and may facilitate the structure-based design of superior ligands against tau amyloids.

20.
Nat Commun ; 14(1): 6030, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758692

RESUMEN

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.


Asunto(s)
COVID-19 , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/genética , Gripe Humana/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Proteómica , Replicación Viral/genética , SARS-CoV-2 , Antivirales/metabolismo , Interacciones Huésped-Patógeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA