Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 175: 113385, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35121213

RESUMEN

Plastic additives are utilized during the production of plastic to modify the attributes and stability of the polymer. As oceanic plastic waste degrades, these additives can leach, and are harmful to global marine ecosystems. Despite the high abundance of additives leached into the marine environment, little is known about their direct impact on marine zooplankton. Here we test for impacts of four plastic additives, UV-327, Irganox 1010, DEHP, and methylparaben, all commonly used in plastic manufacturing, on purple sea urchin (Strongylocentrotus purpuratus) larval growth and survival in a serial dose response for 4 days. Methylparaben, UV-327, and Irganox 1010 significantly reduced larval body length by about 5% for at least one dose. In contrast, all compounds reduced larval survival by 20-70% with strongest effects at intermediate rather than high doses. Our results highlight that plastic additives should be tested for their effects on marine organisms.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Organismos Acuáticos , Ecosistema , Larva , Plásticos/metabolismo , Strongylocentrotus purpuratus/metabolismo
2.
Environ Pollut ; 284: 117379, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34091258

RESUMEN

Microplastics (<5 mm) are ubiquitous in the global environment and are increasingly recognized as a biological hazard, particularly in the oceans. Zooplankton, at the base of the marine food web, have been known to consume microplastics. However, we know little about the impacts of microplastics across life history stages and on carbon settling. Here, we investigated the effects of ingestion of neutrally buoyant polystyrene beads (6.68 µm) by the copepod Acartia tonsa on (1) growth and survival across life history stages, (2) fecundity and egg quality, (3) and fecal characteristics. We found that microplastic exposure reduced body length and survival for nauplii and resulted in smaller eggs when copepods were exposed during oogenesis. Combining these life history impacts, our models estimate a 15% decrease in population growth leading to a projected 30-fold decrease in abundance over 1 year or 20 generations with microplastic exposure. In addition, microplastic-contaminated fecal pellets were 2.29-fold smaller and sinking rates were calculated to be 1.76-fold slower, resulting in an estimated 4.03-fold reduction in fecal volume settling to the benthos per day. Taken together, declines in population sizes and fecal sinking rates suggest that microplastic consumption by zooplankton could have cascading ecosystem impacts via reduced trophic energy transfer and slower carbon settling.


Asunto(s)
Copépodos , Contaminantes Químicos del Agua , Animales , Ecosistema , Microplásticos , Plásticos , Crecimiento Demográfico , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA