Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; 8(7): e2301197, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38376006

RESUMEN

Safe and accurate in situ delivery of biocompatible materials is a fundamental requirement for many biomedical applications. These include sustained and local drug release, implantation of acellular biocompatible scaffolds, and transplantation of cells and engineered tissues for functional restoration of damaged tissues and organs. The common practice today includes highly invasive operations with major risks of surgical complications including adjacent tissue damage, infections, and long healing periods. In this work, a novel non-invasive delivery method is presented for scaffold, cells, and drug delivery deep into the body to target inner tissues. This technology is based on acousto-sensitive materials which are polymerized by ultrasound induction through an external transducer in a rapid and local fashion without additional photoinitiators or precursors. The applicability of this technology is demonstrated for viable and functional cell delivery, for drug delivery with sustained release profiles, and for 3D printing. Moreover, the mechanical properties of the delivered scaffold can be tuned to the desired target tissue as well as controlling the drug release profile. This promising technology may shift the paradigm for local and non-invasive material delivery approach in many clinical applications as well as a new printing method - "acousto-printing" for 3D printing and in situ bioprinting.


Asunto(s)
Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Polimerizacion , Impresión Tridimensional , Andamios del Tejido , Andamios del Tejido/química , Humanos , Materiales Biocompatibles/química , Ingeniería de Tejidos , Animales , Ondas Ultrasónicas , Ratones
2.
Nanomaterials (Basel) ; 12(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36234471

RESUMEN

Solar-to-hydrogen generation is a promising approach to generate clean and renewable fuel. Nanohybrid structures such as CdSe@CdS-Pt nanorods were found favorable for this task (attaining 100% photon-to-hydrogen production efficiency); yet the rods cannot support overall water splitting. The key limitation seems to be the rate of hole extraction from the semiconductor, jeopardizing both activity and stability. It is suggested that hole extraction might be improved via tuning the rod's dimensions, specifically the width of the CdS shell around the CdSe seed in which the holes reside. In this contribution, we successfully attain atomic-scale control over the width of CdSe@CdS nanorods, which enables us to verify this hypothesis and explore the intricate influence of shell diameter over hole quenching and photocatalytic activity towards H2 production. A non-monotonic effect of the rod's diameter is revealed, and the underlying mechanism for this observation is discussed, alongside implications towards the future design of nanoscale photocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...