Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121517, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35724594

RESUMEN

Developing an effective detection method for benfluralin (BFA) is of great significance, since BFA as most widely used herbicides can be bioaccumulated by aquatic organisms in environment, possessing potential risks to human health. Owing to aggregation-caused quenching effect, most fluorescent detection methods based on donor-acceptor organic fluorophores suffered from very low sensitivity towards BFA in water system, hampering the bioimaging application in plants. In this work, we reported a novel surfactant-assisted fluorescent probe enabling detection of BFA in water with a high sensitivity. The involvement of specific surfactant Triton X100 (TX100) could amplify the response signal of probe more than 100-fold. The detection limit for BFA was determined to be 80 nM, satisfying the environmental protection requirements. Moreover, we demonstrated applications of this strategy for the fluorescent imaging of BFA in plant. The absorbance of BFA into roots of Arabidopsis thaliana and castor seedlings was successfully observed based on this method.


Asunto(s)
Arabidopsis , Tensoactivos , Fluorescencia , Colorantes Fluorescentes , Humanos , Toluidinas , Agua
2.
Anal Chim Acta ; 1176: 338763, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34399901

RESUMEN

Monitoring of cysteine (Cys) is of significant importance for studying Cys-involved biological functions and clinically diagnosing Cys-related diseases. Recently, few fluorescent probes with two different reacting sites were reported to be capable of sensing different concentration ranges of Cys with distinct fluorescence signals, particularly suiting for bioimaging. However, due to relative sophisticated synthesis and moderate selectivity, the applications of these probes were still severely restricted. In this work, we proposed a novel probe design strategy by utilizing two same reacting groups, instead of two different reacting groups, to simplify the synthesis route and minimize the interference from competing species. Same reacting groups in a probe with different steric hindrances could exhibit different reactivities to Cys. This probe showed distinguishable fluorescence peak wavelengths towards low and high concentration ranges of Cys, giving green and blue emissions, respectively. Moreover, this probe was successfully applied for monitoring of Cys concentration in living cells. We believe this work provided a simpler strategy for dual-site fluorescent probes to sense difference concentration ranges of Cys, which may inspire more probe design in future.


Asunto(s)
Cisteína , Colorantes Fluorescentes , Acrilatos , Fluorescencia , Células HeLa , Homocisteína , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA