Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400384, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096156

RESUMEN

A high-quality filler within mixed matrix membranes, coupled with uniform dispersity, endows a high-efficiency transfer pathway for the significant improvement on separation performance. In this work, a zeolite-typed MCM-22 filler is reported that is doped into polydimethylsiloxane (PDMS) matrix by ultrafast photo-curing technique. The unique structure of nanosheets assembly layer by layer endows the continuous transfer channels towards penetrate molecules because of the inter-connective nanosheets within PDMS matrix. Furthermore, an ultrafast freezing effect produced by fast photo-curing is used to overcome the key issue, namely filler aggregation, and further eliminates defects. When pervaporative separating a 5 wt% ethanol aqueous solution, the resulting MCM-22/PDMS membrane exhibits an excellent membrane flux of 1486 g m-2 h-1 with an ethanol separation factor of 10.2. Considering a biobased route for ethanol production, the gas stripping and vapor permeation through this membrane also shows a great enrichment performance, and the concentrated ethanol is up to 65.6 wt%. Overall, this MCM-22/PDMS membrane shows a high separation ability for ethanol benefited from a unique structure deign of fillers and ultrafast curing speed of PDMS, and has a great potential for bioethanol separation from cellulosic ethanol fermentation.

2.
Mater Horiz ; 11(19): 4681-4688, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38984427

RESUMEN

The interfacial interaction between the selective layer and porous substrate directly determines the separation performance and service lifetime of functional composite membranes. Till now, almost all reported polymeric selective layers are physically in contact with the substrate, which is unsatisfactory for long-term operation. Herein, we introduced a functional composite membrane with ultra-interfacial stability via layer integration between the polydimethylsiloxane selective layer and polyacrylonitrile substrate, where a facile light-triggered copolymerization achieved their covalent bonding. The critical load for the failure of the selective layer is 45.73 mN when testing the interfacial adhesion, i.e., 5.8 times higher than that before modification and significantly higher than previous reports. It also achieves superior pervaporation performance with a separation factor of 9.54 and membrane flux of 1245.6 g m-2 h-1 feeding a 1000 ppm phenol/water solution at 60 °C that is significantly higher than the same type of polymeric ones. Not limited to pervaporation, such a strategy sheds light on the design of highly stable composite membranes with different purposes, while the facile photo-trigged technique shows enormous scalability.

3.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38811360

RESUMEN

The advancement of spatial transcriptomics (ST) technology contributes to a more profound comprehension of the spatial properties of gene expression within tissues. However, due to challenges of high dimensionality, pronounced noise and dynamic limitations in ST data, the integration of gene expression and spatial information to accurately identify spatial domains remains challenging. This paper proposes a SpaNCMG algorithm for the purpose of achieving precise spatial domain description and localization based on a neighborhood-complementary mixed-view graph convolutional network. The algorithm enables better adaptation to ST data at different resolutions by integrating the local information from KNN and the global structure from r-radius into a complementary neighborhood graph. It also introduces an attention mechanism to achieve adaptive fusion of different reconstructed expressions, and utilizes KPCA method for dimensionality reduction. The application of SpaNCMG on five datasets from four sequencing platforms demonstrates superior performance to eight existing advanced methods. Specifically, the algorithm achieved highest ARI accuracies of 0.63 and 0.52 on the datasets of the human dorsolateral prefrontal cortex and mouse somatosensory cortex, respectively. It accurately identified the spatial locations of marker genes in the mouse olfactory bulb tissue and inferred the biological functions of different regions. When handling larger datasets such as mouse embryos, the SpaNCMG not only identified the main tissue structures but also explored unlabeled domains. Overall, the good generalization ability and scalability of SpaNCMG make it an outstanding tool for understanding tissue structure and disease mechanisms. Our codes are available at https://github.com/ZhihaoSi/SpaNCMG.


Asunto(s)
Algoritmos , Transcriptoma , Humanos , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Redes Neurales de la Computación , Biología Computacional/métodos , Corteza Prefrontal/metabolismo
4.
Small ; 19(15): e2207651, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36631281

RESUMEN

Single-atom alloys (SAAs) display excellent electrocatalytic performance by overcoming the scaling relationships in alloys. However, due to the lack of a unique structure engineering design, it is difficult to obtain SAAs with a high specific surface area to expose more active sites. Herein, single Co atoms are immobilized on Pd metallene (Pdm) support to obtain Co/Pdm through the design of the engineered morphology of Pd, realizing the preparation of ultra-thin 2D SAA. The unsaturated coordination environments combined with the unique geometric and electronic structures realize the modulation of the d-band center and the redistribution of charges, generating highly active electronic states on the surface of Co/Pdm. Benefiting from the synergistic interaction and spillover effect, the Co/Pdm electrocatalyst exhibits outstanding hydrogen evolution reaction (HER) performance in both acid and alkaline solutions, especially with a Tafel slope of 8.2 mV dec-1 and a low overpotential of 24.7 mV at 10 mA cm-2 in the acidic medium, which outperforms commercial Pt/C and Pd/C. This work highlights the successful preparation of 2D ultra-thin SAA, which provides a new strategy for the preparation of HER electrocatalyst with high efficiency, activity, and stability.

5.
Polymers (Basel) ; 14(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35631833

RESUMEN

When reinforced concrete structures are subjected to impact loads, they may suddenly yield or fail, or even collapse as a whole. In this paper, the impact resistance of reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP) grid and engineered cementitious composites (ECC) was studied. Drop hammer impact tests were conducted on eight beams, then the finite element model was used to simulate the impact test, finally a simplified two-degree-of-freedom (TDOF) model was proposed for CFRP grid reinforced ECC layer strengthened RC beams under impact loading. The results showed that CFRP grid reinforced ECC layer significantly improved the impact resistance of RC beams. When the ECC and CFRP grid were used, the crack development was inhibited after the concrete cracked in the tensile area, avoiding the brittle damage of concrete beams with one crack to the end. Compared with the control beam, the reaction force of RC beams strengthened with CFRP grid and ECC under impact load increased by 16.2%~34.5%, the maximum mid-span displacement decreased by 16.3%~31.6% and the mid-span residual displacement decreased by 36.02%~49.53%. The finite element model and the proposed TDOF mode were demonstrated to effectively simulate the strengthened beam under impact loading.

6.
ACS Appl Mater Interfaces ; 12(28): 31887-31895, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32551481

RESUMEN

Poly(dimethylsiloxane) (PDMS) membranes are widely used for bioethanol separation. However, the network cavity size r3 of PDMS membranes is generally smaller than the ethanol kinetic radius (0.225 nm), which limits the transport of ethanol molecules and weakens the pervaporation performance. Herein, we proposed a particle-driven, ultrafast-cured strategy to overcome the above key issue: (1) Incorporating particles into PDMS for preventing polymer chains from packing tightly, (2) freezing particles within a PDMS layer by the ultrafast UV-cross-linking for improving its distribution and increasing the chain extension of the polymer, and (3) covalently bonding particles with PDMS to enhance their compatibility. Consequently, r3 was increased to 0.262 nm, and an extremely high loading membrane (50 wt %) with an ultrashort curing time (20 s) was prepared, which is difficult to be realized by the conventional thermally driven approach. As a result, a separation factor of 13.4 with a total flux of 2207 g m-2 h-1 for separating ethanol from a 5 wt % aqueous solution at 60 °C was obtained. This strategy shows the feasibility of recovery of different bioalcohols and the large-scale continuous membrane preparation.

7.
Sci Total Environ ; 728: 138011, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32361353

RESUMEN

The lack of electron acceptors in cathode has limited the widespread application of sediment microbial fuel cells (SMFCs). In this study, Chlorella vulgaris (C. vulgaris) was added to the cathode to produce oxygen as an electron acceptor. The synergistic effects between C. vulgaris and electrogenic microorganisms in SMFCs were investigated, and were shown to enhance biodegradation of organic matter in sediments and convert chemical energy into electrical energy. Results showed that the addition of C. vulgaris on the cathode of SMFCs significantly reduced their internal resistance. The low algae concentration SMFC group reduced the initial internal resistance by 67.4% under illumination and produced a maximum power density of 5.17 W/m3, which was 6 times higher than that of SMFCs without addition of C. vulgaris. We also obtained organic matter removal efficiencies 37.2% higher after 16 days, which accelerated the startup time for three times. It was demonstrated that IEF-N and OP, respectively, were forms of nitrogen and phosphorus removed by SMFCs. Additionally, high-throughput sequencing of microbial communities indicated that C. vulgaris increased the abundance of electrogenic bacteria (Geobacter and Desulfobulbaceae) in the anode and types of photosynthetic bacteria that support oxygen production in the cathode. The combined application of microalgae- and SMFC-based technologies offer a promising remediation approach for organically-contaminated sediments.


Asunto(s)
Fuentes de Energía Bioeléctrica , Chlorella vulgaris , Contaminantes Ambientales , Electricidad , Electrodos , Sedimentos Geológicos
8.
J Hazard Mater ; 393: 122407, 2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32135362

RESUMEN

Sponge iron (s-Fe0) is a potential alternative electron donor for nitrate reduction. To gain insight into the mechanism of denitrification in a constructed wetland- sponge iron coupled system (CW-Fe0 system), the removal performance and reduction characteristics of nitrate in constructed wetlands (CWs) with and without s-Fe0 application were compared. Results indicated that s-Fe0 intensified the removal of nitrate with a 6h-HRT. The nitrate removal efficiency was improved by 16-76 % with various influent NO3--N concentrations (10-30 mg L-1) and at a chemical oxygen demand(COD)/N ratio of 5. The rates of chemical denitrification were positively correlated with the dosage of s-Fe0 and negatively correlated with the influent COD concentration. 16S rDNA sequencing revealed that hydrogen-utilizing autotrophic denitrifier of Hydrogenophaga was highly enriched (accounting for 10 % of the total OTUs) only in CW-Fe0 system. The micro-environment created by s-Fe0 was suitable for heterotrophic denitrifiers of Thauera, Tessaracoccus and Simplicispira. The determination of physiological indicators for plants showed that the application of s-Fe0 causes abiotic stress to wetland plants (Canna indica L.). Nevertheless, s-Fe0 can be used as a substrate for CWs, since it allows a high-efficiency removal of nitrate by mediating chemical denitrification and hydrogen-driven autotrophic denitrification.

9.
Bioresour Technol ; 296: 122350, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31744666

RESUMEN

This study investigates the performance of a pyrite-based constructed wetland-microbial fuel cell (PCW-MFC) in chemical oxygen demand (COD), nitrate (NO3--N), total inorganic nitrogen (TIN), and total phosphorus (TP) removal and bioelectricity generation, and explores the mechanisms involved. Four microcosms were used: a constructed wetland (CW), a pyrite-based constructed wetland (PCW), a constructed wetland-microbial fuel cell (CW-MFC), and a PCW-MFC. After 180 days' operation, the PCW-MFC exhibited enhanced simultaneous nitrate and phosphorus removal and bioelectricity output. The maximum COD, NO3--N, TIN, and TP removal efficiencies in the PCW-MFC were 71.9%, 70.1%, 63.2%, and 91.2%, respectively, for a hydraulic retention time (HRT) of 6 h. The mean bioelectricity output of the PCW-MFC was 19.0-28.4% higher than that of the CW-MFC. The nitrate removal rate constant of the PCW-MFC was 1.04 d-1, which is significantly higher than those of the others. Geobacter and sulfate-reducing bacteria were enriched in the PCW-MFC.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electrodos , Composición Familiar , Hierro , Fósforo , Sulfuros , Aguas Residuales , Humedales
10.
Environ Sci Pollut Res Int ; 27(21): 25877-25885, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31586317

RESUMEN

The nitrogen removal efficiency in constructed wetlands (CWs) was largely affected by the dissolved oxygen (DO). In this study, micro-aeration with different numbers of hollow fiber membrane modules (HFMEs) was adopted to increase the oxygen availability and improve the nitrogen removal efficiency in CWs under different air temperatures and different hydraulic retention time (HRT). Compared to the plant oxygen release (ROL) of wetland plants and traditional mechanical aeration, HFME increased the oxygen availability and enhanced the nitrogen removal efficiency in CWs. The COD and NH4+-N removal efficiencies increased with the increase of the HMFE. TN removal efficiency was increased by 8~16% after the application of HFME in CWs in the high-temperature stage. However, less HFME in CW-M1 realized the highest TN removal efficiency in low- and medium-temperature stages. At low temperature after 4-day HRT, the DO concentration respectively reached 6.25 mg L-1 and 3.25 mg L-1 in the upper zone and the bottom of CW-M1. The TN removal efficiencies in the upper zone of CW-M1 (60.69%) and the bottom of CW-M1 (64.98%) were all significantly higher than those in the upper zone of CK (35.98%) and the bottom of CK (39.9%). In addition, the microbial biomass and community analyses revealed that CW-M1 showed the most nitrifying bacteria and the best metabolic activity of bacteria. HEMF in CW-M1 also increased the nitrifying capacity from 0.12 to 0.46 mg kg-1 h-1. The application of HFME in CWs accelerated the nitrification process by enhancing nitrifying bacteria and less HFME realized the highest TN removal efficiency through nitrification-denitrification processes. Graphical abstract The application of hollow fiber membrane modules in CWs enhanced the pollutants (TN and COD) removal efficiency in the process of biological nitrification-denitrification and increased the number of nitrifying bacteria.


Asunto(s)
Nitrógeno , Humedales , Análisis de la Demanda Biológica de Oxígeno , Desnitrificación , Nitrificación , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA